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Introduction

Error models

AADL error models are finite automata enriched with probabilistic failures
(and repairs).

Two kinds of error models can be distinguished:

Discrete-time (cf. Marta Kwiatkowska’s tutorial)

Failures and repairs are modeled by discrete probabilities
Instantaneous probabilistic decision to fail (or repair)

⇒ Discrete-Time Markov Chains (DTMCs)

Continuous-time (here)

Failures and repairs are modeled by continuous probabilities
Occur after a random duration
Mostly exponential distributions

⇒ Continuous-Time Markov Chains (CTMCs)

As error models are interweaved with non-probabilistic nominal models, in fact
decision processes result. We consider deterministic decision processes.
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Random Timing
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Why Exponential Distributions?

Are adequate for many real-life phenomena

the time until a radioactive particle decays
the time between successive car accidents
inter-arrival times of jobs, telephone calls in a fixed interval

Are the continuous counterpart of the geometric distribution

Heavily used in physics, performance, and reliability analysis

Can approximate general distributions arbitrarily closely
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Negative Exponential Distributions

Definition (Exponential distribution)

The density of an exponentially distributed random variable Y with rate
λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of Y is:

FY (d) =

∫ d

0
λ·e−λ·x dx = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Lemma (Variance and expectation)

If Y is exponentially distributed with rate λ ∈ R>0, then

expectation E [Y ] = 1
λ and variance X [Y ] = 1

λ2
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Exponential PDF and CDF

The higher λ, the faster the CDF approaches 1.
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Continuous-Time Markov Chains

Definition (Continuous-Time Markov Chain)

A CTMC C is a tuple (S ,R, ιinit) with:

S is a countable and non-empty set of states

R : S × S → R≥0 is a transition rate function
(where

∑
s′∈S

R(s, s ′) > 0 for each s ∈ S)

ιinit : S → [0, 1] gives the initial distribution with
∑
s∈S

ιinit(s) = 1

Additional notions

The possible initial states are given by the set { s ∈ S | ιinit(s) > 0 }.
The exit rate of a state, R : S → R>0, is determined by

R(s) :=
∑
s′∈S

R(s, s ′).
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CTMC Semantics by Example

Example

CTMC semantics

Transition s → s ′ := r.v. Xs,s′ with rate R(s, s ′)

Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2 ≤ Xs0,s1 ∩ Xs0,s2 ≤ Xs0,s3}

=
R(s0, s2)

R(s0, s1) + R(s0, s2) + R(s0, s3)

=
R(s0, s2)

R(s0)

Probability of staying at most time t in s0 is:

Pr{min{Xs0,s1 ,Xs0,s2 ,Xs0,s3} ≤ t}
= 1− e−(R(s0,s1)+R(s0,s2)+R(s0,s3))·t

= 1− e−R(s0)·t
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CTMC Semantics

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:∫ t

0
R(s)·e−R(s)·x dx = 1− e−R(s)·t

State-to-state timed transition probability

The probability to move from s to s ′ in [0, t] is:

R(s, s ′)

R(s)
·
(

1− e−R(s)·t
)
.
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CTMCs are Omnipresent!

Markovian queueing networks (Kleinrock 1975)

Stochastic Petri nets (Molloy 1977)

Stochastic activity networks (Meyer & Sanders 1985)

Stochastic process algebra (Herzog et al., Hillston 1993)

Probabilistic input/output automata (Smolka et al. 1994)

Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis!
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Paths in a CTMC

Definition (Timed paths)

(Timed) paths in a CTMC C are maximal (i.e., infinite) paths of
alternating states and time instants:

π = s0
t0−−→ s1

t1−−→ s2 · · ·
such that si ∈ S and ti ∈ R>0.

Here each ti is the amount of time spent in state si .

Notations

Paths(s): set of paths starting in s ∈ S

Paths(C): set of paths starting in some initial state of C
π[i ] := si : (i+1)-st state along timed path π

π@t: state occupied in π at time t ∈ R≥0, i.e. π@t := π[i ] where i is
the smallest index such that

∑i
j=0 tj > t
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Timed Reachability Events

Let CTMC C with (possibly infinite) state space S .

(Simple) timed reachability

Eventually reach a state in G ⊆ S in the interval I :

♦I G = {π ∈ Paths(C) | ∃t ∈ I . π@t ∈ G }
Invariance, i.e., always stay in state in G in the interval I :

�I G = {π ∈ Paths(C) | ∀t ∈ I . π@t ∈ G } = ♦I G .

Constrained timed reachability

Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UI G = {π ∈ Paths(C) | ∃t ∈ I . π@t ∈ G ∧ ∀d < t. π@d 6∈ F }
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Measurability

Theorem (Measurability theorem)

Events ♦I G, �I G, and F UI G are measurable on any CTMC.
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Timed Reachability Probabilities in Finite CTMCs

Problem statement
Let C be a CTMC with finite state space S , s ∈ S , t ∈ R≥0 and G ⊆ S .

Aim: compute Pr(s |= ♦≤t G ) = Prs{π ∈ Paths(s) | π |= ♦≤t G }
where Prs is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

Let function xs(t) = Pr(s |= ♦≤t G ) for any state s

if G is not reachable from s, then xs(t) = 0 for all t
if s ∈ G then xs(t) = 1 for all t

For any state s ∈ Pre∗(G ) \ G :

xs(t) =

∫ t

0

∑
s′∈S

R(s, s ′) · e−R(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
probability to fulfill

♦≤t−x G from s ′

dx
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Solving Reachability Problems

Reachability probabilities in finite CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations.

This is in general non-trivial, inefficient, and has several pitfalls such as
numerical stability.

Solution

Reduce the problem of computing Pr(s |= ♦≤t G ) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.
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Timed Reachability Probabilities = Transient Probabilities

Aim

Compute Pr(s |= ♦≤tG ) in CTMC C.

Observe that once a path π reaches
G within time t, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S ,R, ιinit) and G ⊆ S . Then CTMC C[G ] := (S ,RG , ιinit)
with

RG (s, t) :=


R(s, t) if s /∈ G
R(s) if s ∈ G , t = s
0 if s ∈ G , t 6= s

(thus: all outgoing transitions of s ∈ G are replaced by a single self-loop at s)

Lemma

Pr(s |= ♦≤tG )︸ ︷︷ ︸
timed reachability in C

= Pr(s |= ♦=tG )︸ ︷︷ ︸
timed reachability in C[G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G ]

.
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Approach

Approach in the COMPASS toolset

1 Weave the nominal behaviour and error model (model extension)

2 The semantics yields an continuous-time decision process

3 Apply (BDD-based) bisimulation minimisation to this process
(not shown here)

4 Mostly this yields a CTMC

5 Verify it using the techniques explained before

6 For timed reachability, cover the entire range from 0 to t

Current work is on directly analysing the stochastic decision process
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Example: Sensor-Filter Data Acquisition System

models a data acquisition
system

the value is read by a sensor,
filtered by a filter, and returned
as output

two redundant sensors
sensor1 and sensor2

two redundant filters filter1

and filter2

a central Monitor detects
anomalies in the output of
either the sensors or the filters,
and issues a system
reconfiguration (switchS or
resp. switchF) whenever
needed

Acquisition system
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Modeling Sensor and Filter Errors

Sensor error model:

two faulty states: Drifted and Dead

Poisson distribution

Filter error model:

two faulty states: Degrade and Dead

Poisson distribution

Sensor error model

Filter error model
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Sensor Error Model in AADL

error model SensorFailures
features
OK: initial state;
Drifted: error state;
Dead: error state;

end SensorFailures;

error model implementation SensorFailures.Impl
events
drift: error event occurrence poisson 0.083;
die: error event occurrence poisson 0.00001;
dieByDrift: error event
occurrence poisson 0.00015;

transitions
OK -[ die ]-> Dead;
OK -[ drift ]-> Drifted;
Drifted -[ dieByDrift ]-> Dead;

end SensorFailures.Impl;

Sensor error model
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Defining Fault Injections

in state Dead, the
output of the
sensor is stuck at
15

in state Dead, the
output of the filter
is stuck at 0

Fault injections
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Properties of Interest

Some properties of interest

A filter or a sensor fails

A sensor fails

sensor1 fails
sensor2 fails

Filters fail twice

Monitor reacts to filter failures

Sensors or filters die within 76 hours

sensor2 fails before filter2 within 512 hours
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Further Information

Probabilistic model checking (Baier et. al, CACM 2011)

(Kwiatkowska et. al, SFM 2011)

(Baier & Katoen, Principles of Model Checking)

CTMC model checking (Baier et. al, IEEE TSE 2003)

Probabilistic bisimulation (Larsen & Skou, Inf. Comp 1989)

(Kemeny & Snell, 1960)

(Buchholz, Appl. Prob. 1994)

Bisimulation minimisation (Derisavi et. al, IPL 2005)

(Valmari & Franceschinis, TACAS 2010)

Stochastic decision processes (Guck et. al, NFM 2012)
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