MOVEP 2012 Tutorial Safety, Dependability and Performance Analysis of Extended AADL Models

Part 2: System Modeling Using AADL

European Space Agency European Space Research and Technology Centre

RWTH Aachen University Software Modeling and Verification Group Thomas Noll

Fondazione Bruno Kessler Centre for Scientific and Technological Research Alessandro Cimatti

MOVEP 2012 School; December 7, 2012; Marseille, France

Contents

- Representing Nominal System Behavior
- Pormal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

Outline

- Representing Nominal System Behavior
- 2 Formal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

The Industry Standard AADL

1989 MetaH

1998 SAE AS-2C

- **2004** AADI 1.0
- **2006** Error Annex 1.0
- AADL 2.0
- **2010** Error Annex 2.0

Paradigm

- Architecture-based and model-driven top-down and bottom-up engineering
- Real-time and performance critical distributed systems
- Complements component-based product-line development

AADL Example: Redundant Power System

Redundant power system:

- contains two batteries batt1/batt2
- used in primary/backup mode
- power switches from primary to backup (and back) when batt1 (batt2) empty
- additionally provides voltage information

AADL Example: Redundant Power System

Redundant power system:

- contains two batteries batt1/batt2
- used in primary/backup mode
- power switches from primary to backup (and back) when batt1 (batt2) empty
- additionally provides voltage information

We shall show:

- hybrid behavior of the batteries
- composition of the power system
- semantics as transition systems
- interweaving of errors

Component type and implementation:

```
end Battery;
device implementation Battery.Imp
```


end Battery.Imp;

device Battery

Type defines the interface:

```
device Battery
  features
   empty: out event port;
  voltage: out data port real default 6.0;
end Battery;

device implementation Battery.Imp
```

```
Battery
                   empty
           voltage
```

```
end Battery.Imp;
```

Adding modes behavior:

```
device Battery
 features
   empty: out event port;
   voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
 modes
   charged: activation mode
   depleted: mode
  transitions
   charged -[]-> charged;
   charged -[empty]-> depleted;
   depleted -[]-> depleted;
end Battery.Imp;
```


Adding hybrid behavior:

end Battery.Imp;

```
device Battery
 features
   empty: out event port;
   voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
 modes
   charged: activation mode
     while energy'=-2.0 and energy>=20.0;
   depleted: mode
     while energy'=-3.0 and energy>=0.0;
  transitions
   charged -[then voltage:=energy/50.0+4.0]-> charged;
   charged -[empty when energy<=20.0]-> depleted;
```

```
Battery
         energy
      \voltage:=...
    charged
  energy =-2.0
  energy>=20.0
                  emptv
         energy<=20.0
    depleted
  energy'=-3.0
  energy>=0.0
      /voltage:=...
           voltage
```

depleted -[then voltage:=energy/50.0+4.0]-> depleted;

Modeling the Redundant Power System

Power system with battery subcomponents:

```
system Power
  features
    voltage: out data port real;
end Power;
system implementation Power.Imp
    subcomponents
    batt1: device Battery.Imp
    batt2: device Battery.Imp
```

```
end Power.Imp;
```

Modeling the Redundant Power System

Adding dynamic reconfiguration:

```
system Power
  features
    voltage: out data port real;
end Power;

system implementation Power.Imp
    subcomponents
    batt1: device Battery.Imp in modes (primary);
    batt2: device Battery.Imp in modes (backup);
```

```
Power

primary

backup

empty

batt2

voltage

voltage
```

```
modes
  primary: initial mode;
  backup: mode;
transitions
  primary -[batt1.empty]-> backup;
  backup -[batt2.empty]-> primary;
end Power.Imp;
```

Modeling the Redundant Power System

Adding port connections:

```
system Power
 features
   voltage: out data port real;
end Power;
system implementation Power.Imp
 subcomponents
    batt1: device Battery.Imp in modes (primary);
    batt2: device Battery.Imp in modes (backup);
  connections
   data port batt1.voltage -> voltage in modes (primary);
    data port batt2.voltage -> voltage in modes (backup);
 modes
   primary: initial mode:
    backup: mode;
 transitions
    primary -[batt1.empty]-> backup;
    backup -[batt2.empty]-> primary;
end Power.Imp;
```

```
Power

primary

empty

battl

voltage

voltage
```

Outline

- Representing Nominal System Behavior
- 2 Formal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

- States: (mode, data values)
- Transitions: timed or internal or synchronized

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 100.0, \mathtt{voltage} = 6.0 \rangle
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle {\tt mode} = {\tt charged}, {\tt energy} = 100.0, {\tt voltage} = 6.0 \rangle
\downarrow {\tt 30.0}
\langle {\tt mode} = {\tt charged}, {\tt energy} = {\tt 40.0}, {\tt voltage} = 6.0 \rangle
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathbf{mode} = \mathtt{charged}, \mathtt{energy} = 100.0, \mathtt{voltage} = 6.0 \rangle \downarrow 30.0 \langle \mathbf{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 6.0 \rangle \downarrow \tau \langle \mathtt{voltage} := \dots \rangle \langle \mathbf{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 4.8 \rangle
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathbf{mode} = \mathrm{charged}, \mathrm{energy} = 100.0, \mathrm{voltage} = 6.0 \rangle \downarrow 30.0 \langle \mathbf{mode} = \mathrm{charged}, \mathrm{energy} = 40.0, \mathrm{voltage} = 6.0 \rangle \downarrow \tau \langle \mathrm{voltage} := \dots \rangle \langle \mathbf{mode} = \mathrm{charged}, \mathrm{energy} = 40.0, \mathrm{voltage} = 4.8 \rangle \downarrow 10.0 \langle \mathbf{mode} = \mathrm{charged}, \mathrm{energy} = 20.0, \mathrm{voltage} = 4.8 \rangle
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 100.0, \mathsf{voltage} = 6.0 \rangle \\ \downarrow 30.0 \\ \langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 40.0, \mathsf{voltage} = 6.0 \rangle \\ \downarrow \tau \langle \mathsf{voltage} := \dots \rangle \\ \langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 40.0, \mathsf{voltage} = 4.8 \rangle \\ \downarrow 10.0 \\ \langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 20.0, \mathsf{voltage} = 4.8 \rangle \\ \downarrow \tau \langle \mathsf{voltage} := \dots \rangle \\ \langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 20.0, \mathsf{voltage} = 4.4 \rangle \\ \\ \langle \mathbf{mode} = \mathsf{charged}, \mathsf{energy} = 20.0, \mathsf{voltage} = 4.4 \rangle \\
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 100.0, \mathtt{voltage} = 6.0 \rangle
                                           ↓ 30.0
 \langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 6.0 \rangle
                                           \downarrow \tau \langle \text{voltage:=...} \rangle
 \langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 4.8 \rangle
                                           \downarrow 10.0
\langle mode = charged, energy = 20.0, voltage = 4.8 \rangle
                                           \downarrow \tau \langle voltage := ... \rangle
\langle mode = charged, energy = 20.0, voltage = 4.4 \rangle
                                           ↓ empty
\langle \mathtt{mode} = \mathtt{depleted}, \mathtt{energy} = 20.0, \mathtt{voltage} = 4.4 \rangle
```

- States: (mode, data values)
- Transitions: timed or internal or synchronized

```
\langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 100.0, \mathtt{voltage} = 6.0 \rangle
                                           ↓ 30.0
 \langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 6.0 \rangle
                                           \downarrow \tau \langle \text{voltage:=...} \rangle
 \langle \mathtt{mode} = \mathtt{charged}, \mathtt{energy} = 40.0, \mathtt{voltage} = 4.8 \rangle
                                           \downarrow 10.0
\langle mode = charged, energy = 20.0, voltage = 4.8 \rangle
                                           \downarrow \tau \langle voltage := ... \rangle
\langle mode = charged, energy = 20.0, voltage = 4.4 \rangle
                                           ↓ empty
\langle \mathtt{mode} = \mathtt{depleted}, \mathtt{energy} = 20.0, \mathtt{voltage} = 4.4 \rangle
                                           1. . . .
```

The Power System Revisited

```
system Power
  features
    voltage: out data port real;
end Power;
system implementation Power. Imp
  subcomponents
    batt1: device Battery.Imp in modes (primary);
    batt2: device Battery.Imp in modes (backup);
  connections
    data port batt1.voltage -> voltage
      in modes (primary);
    data port batt2.voltage -> voltage
      in modes (backup);
  modes
    primary: initial mode;
    backup: mode;
  transitions
    primary -[batt1.empty]-> backup;
    backup -[batt2.empty]-> primary;
end Power.Imp;
```

- States: (mode, data values)+
- Transitions determined by active components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - \bullet multi-way event communication from component to ≥ 1 connected components
 - Initialize (re-)activated subcomponents
 - **3** Evaluate data connections (copy source \rightarrow target data port)

- States: (mode, data values)+
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - \bullet multi-way event communication from component to ≥ 1 connected components
 - Initialize (re-)activated subcomponents
 - Section S

```
\langle \texttt{m} = \texttt{primary}, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle | \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt
```

- States: (mode, data values)⁺
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - multi-way event communication from component to ≥ 1 connected components
 - 2 Initialize (re-)activated subcomponents
 - Section S

```
\begin{split} &\langle \texttt{m}\!=\!\underbrace{\texttt{primary}}, \texttt{v}\!=\!6.0 \rangle \big| \langle \texttt{m}\!=\!\underbrace{\texttt{charged}}, \texttt{e}\!=\!100.0, \texttt{v}\!=\!6.0 \rangle \big| \langle \texttt{m}\!=\!\texttt{charged}, \texttt{e}\!=\!100.0, \texttt{v}\!=\!6.0 \rangle \\ &\downarrow \texttt{40.0} \\ &\langle \texttt{m}\!=\!\texttt{primary}, \texttt{v}\!=\!6.0 \rangle \big| \langle \texttt{m}\!=\!\underline{\texttt{charged}}, \texttt{e}\!=\!20.0, \texttt{v}\!=\!6.0 \rangle \big| \langle \texttt{m}\!=\!\texttt{charged}, \texttt{e}\!=\!100.0, \texttt{v}\!=\!6.0 \rangle \end{split}
```

- States: (mode, data values)+
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - multi-way event communication from component to ≥ 1 connected components
 - 2 Initialize (re-)activated subcomponents

```
\begin{split} &\langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \big| \langle \texttt{m} = \underline{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \big| \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \quad \quad \downarrow \texttt{40.0} \\ & \quad \quad \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \big| \langle \texttt{m} = \underline{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \big| \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \quad \quad \quad \quad \quad \downarrow \texttt{t} \tau \langle \texttt{voltage} : = \ldots \rangle \\ & \langle \texttt{m} = \texttt{primary}, \texttt{v} = \textbf{4.4} \rangle \big| \langle \texttt{m} = \underline{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = \textbf{4.4} \rangle \big| \langle \texttt{m} = \underline{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \end{split}
```

- States: (mode, data values)+
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - multi-way event communication from component to ≥ 1 connected components
 - 2 Initialize (re-)activated subcomponents

```
\label{eq:charged_energy} \begin{split} &\langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \, \big| \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \, \big| \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \quad \quad \downarrow 40.0 \\ & \quad \quad \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \, \big| \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \quad \quad \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 4.4 \rangle \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \quad \quad \langle \texttt{m} = \underbrace{\texttt{backup}}, \texttt{v} = 6.0 \rangle \, \, \big| \langle \texttt{m} = \texttt{depleted}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \end{split}
```

- States: (mode, data values)+
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - \bullet multi-way event communication from component to ≥ 1 connected components
 - 2 Initialize (re-)activated subcomponents
 - Section S

```
\begin{split} &\langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 200.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 200.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 200.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 200.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 20.0, \texttt{v
```

- States: (mode, data values)+
- Transitions determined by <u>active</u> components:
 - Perform local transitions:
 - timed local transition in all components or
 - internal transition in component or
 - \bullet multi-way event communication from component to ≥ 1 connected components
 - 2 Initialize (re-)activated subcomponents
 - ullet Evaluate data connections (copy source o target data port)

```
\begin{split} &\langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \downarrow 40.0 \\ & \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \downarrow \psi \, \tau \, \langle \texttt{voltage} : = \dots \rangle \\ & \langle \texttt{m} = \underbrace{\texttt{primary}}, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \texttt{charged}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \downarrow \psi \, \tau \, \langle \texttt{empty} \rangle \\ & \langle \texttt{m} = \underbrace{\texttt{backup}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 100.0, \texttt{v} = 6.0 \rangle \\ & \downarrow \psi \, \langle \texttt{m} = \underbrace{\texttt{backup}}, \texttt{v} = 6.0 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{depleted}}, \texttt{e} = 20.0, \texttt{v} = 4.4 \rangle \, \big| \, \langle \texttt{m} = \underbrace{\texttt{charged}}, \texttt{e} = 20.0, \texttt{v} = 6.0 \rangle \end{split}
```

Outline

- Representing Nominal System Behavior
- 2 Formal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

Integrating Erroneous and Nominal Behavior

Error Modeling

```
error model BatteryFailure
  features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;

error model implementation BatteryFailure.Imp
  events
    fault: error event occurrence poisson 0.01;
  transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Error Modeling

```
error model BatteryFailure
  features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;

error model implementation BatteryFailure.Imp
  events
    fault: error event occurrence poisson 0.01;
  transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Fault injection

An error model does not influence the nominal behavior unless they are linked through fault injection: (s, d, a) means that on entering error state s, the assignment d := a is performed, where d is a data element and a the fault effect.

Error Modeling

```
error model BatteryFailure
  features
    ok: initial state;
    dead: error state;
    batteryDied: out error propagation;
end BatteryFailure;

error model implementation BatteryFailure.Imp
  events
    fault: error event occurrence poisson 0.01;
  transitions
    ok -[fault]-> dead;
    dead -[batteryDied]-> dead;
end BatteryFailure.Imp;
```

Fault injection

```
In error state dead, voltage := 0
```

The Complete Power System Model

Model Extension

Nominal model + error model + fault injections = extended model

- Modes are pairs of nominal modes and error model states
 - Starting mode = (original starting mode, starting error state)
- Event ports +:= error propagations
- Event port connections +:= propagation port connections
- Transition relation := all possible interleavings and interactions
 between nominal and error model, taking failure effects into account
- Other elements (e.g., mode invariants) are unaffected

Model Extension

Nominal model + error model + fault injections = extended model

- Modes are pairs of nominal modes and error model states
 - Starting mode = (original starting mode, starting error state)
- Event ports +:= error propagations
- Event port connections +:= propagation port connections
- Transition relation := all possible interleavings and interactions
 between nominal and error model, taking failure effects into account
- Other elements (e.g., mode invariants) are unaffected

Probabilistic error transitions

As an error model has probabilistic transitions, our semantical model has to be equipped with such transitions.

This yields interactive Markov chains := LTS + Markov chains.

Battery Component

Nominal specification

```
device Battery
  features
   empty: out event port;
   voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged: activation mode while ...;
   depleted: mode while ...;
  transitions
    charged -[then voltage:=...]-> charged;
    charged -[empty when energy<=20.0]-> depleted;
   depleted -[then voltage:=...]-> depleted;
```

Product construction for modes

```
device Battery
  features
   empty: out event port;
    voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged#ok: activation mode while ...:
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged -[then voltage:=...]-> charged;
    charged -[empty when energy<=20.0]-> depleted;
   depleted -[then voltage:=...]-> depleted;
```

Integration of nominal transitions

```
device Battery
  features
   empty: out event port;
    voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
   depleted#ok -[then voltage:=...]-> depleted#ok;
```

Fault injection

```
device Battery
  features
   empty: out event port;
    voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
   depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.01 then voltage:=0]-> charged#dead;
   depleted#ok -[prob 0.01 then voltage:=0] -> depleted#dead;
```

Original transitions with fault effects

```
device Battery
  features
   empty: out event port;
    voltage: out data port real default 6.0;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
  transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
   depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.01 then voltage:=0]-> charged#dead;
   depleted#ok -[prob 0.01 then voltage:=0]-> depleted#dead;
    charged#dead -[then voltage:=0]-> charged#dead;
    charged#dead -[empty when energy<=20.0]-> depleted#dead;
   depleted#dead -[then voltage:=0]-> depleted#dead;
```

Addition of error propagations

```
device Battery
  features
   empty: out event port;
    voltage: out data port real default 6.0;
    batteryDied: out event port;
end Battery;
device implementation Battery.Imp
  subcomponents
   energy: data continuous default 100.0;
  modes
    charged#ok: activation mode while ...;
   depleted#ok, charged#dead, depleted#dead: mode while ...;
 transitions
    charged#ok -[then voltage:=...]-> charged#ok;
    charged#ok -[empty when energy<=20.0]-> depleted#ok;
   depleted#ok -[then voltage:=...]-> depleted#ok;
    charged#ok -[prob 0.01 then voltage:=0]-> charged#dead;
   depleted#ok -[prob 0.01 then voltage:=0]-> depleted#dead;
    charged#dead -[then voltage:=0]-> charged#dead;
    charged#dead -[empty when energy<=20.0]-> depleted#dead;
    depleted#dead -[then voltage:=0]-> depleted#dead;
   depleted#dead -[batteryDied]-> depleted#dead;
end Battery.Imp;
```

Specifying Observability

- Specification of observables for diagnosability analysis (later)
 - for outgoing data ports of type bool
- Example:

```
system PowerSystem
  features
    voltage: out data port real;
    alarm: out data port bool initially false observable;
end PowerSystem;
system implementation PowerSystem.Imp
  subcomponents
    pow: system Power.Imp;
  connections
    data port pow.voltage -> voltage;
 modes
    normal: initial mode:
    critical: mode:
  transitions
    normal -[when voltage < 4.5 then alarm:=true] -> critical;
    critical -[when voltage>5.5 then alarm:=false] -> normal;
end PowerSystem.Imp;
```

Outline

- Representing Nominal System Behavior
- 2 Formal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

Loading Models

Defining Fault Injections

Simulating System Behavior

Outline

- Representing Nominal System Behavior
- 2 Formal Semantics
- Modeling Error Behavior
- 4 Tool Support
- 5 References & Ongoing Activities

References & Ongoing Activities

References

- Our AADL variant
- AADL formal semantics
- Relation to attribute grammars

(Bozzano et. al, MEMOCODE 2009)

(Bozzano et. al, Computer J. 2010)

(Noll, FACS 2011)

References & Ongoing Activities

References

- Our AADL variant
- AADL formal semantics
- Relation to attribute grammars

(Bozzano et. al, MEMOCODE 2009)

(Bozzano et. al, Computer J. 2010)

(Noll, FACS 2011)

Ongoing activities

- Contribution to AADL standardization
- Modeling features for launcher systems
- Security aspects in AADL (D-MILS Project)