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Concurrent Programs

Parallel threads (with/without procedure calls)

Static/Dynamic number of threads

Communication

I Shared memory

F Notion of action atomicity
F Actions by a same threads are executed in the same order

(Sequential Consistency)
F Actions by different threads are interleaved non-deterministically

I Message passing

F Channels (queues)
F Unordered/FIFO ...
F Perfect/Lossy

We assume finite data domain (e.g., booleans).
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Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

⇒ Finite product of finite-state systems (threads + variables)

⇒ Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS’77]
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Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

⇒ Finite number of possible channel contents

⇒ Finite product of finite-state systems (threads + channels)

⇒ Decidable

Product grows exponentially in # threads and size of channels.

Reachability is decidable, and PSPACE-complete.
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Facing the state-space explosion

Partial order techniques

I Independent actions ⇒ commutable actions ⇒ many interleavings
I Explore representatives up to independent actions commutations
I Compact representations of sets of behaviors (Unfoldings)

Godefroid, Wolper, Peled, Holzman, Valmari, McMillan, Esparza, ...

Symbolic techniques

I Compact representations of sets of states (e.g., BDD)
I Encoding bounded-length computation + SAT solvers

Clarke, McMillan, Somenzi, Biere, Cimatti, ...
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Beyond the finite-state case

Unbounded (parametric/dynamic) number of threads

I Undecidable in general if threads Ids are allowed
I ⇒ Anonymous threads

Unbounded channels

I Undecidable in general in case of FIFO queues
I ⇒ Unordered queues (multisets), lossy queues
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Programs with Dynamic Creation of Threads

Finite number of variables

Finite data domain

⇒ Threads are anonymous (no way to refer to identities)

Iterative processes (no recursive procedure calls)

⇒ Counting abstraction
I Finite number of possible local states `1, . . . , `m
I Count how many threads are in a given local state

Safety is reducible to state reachability in VASS / Coverability in PN
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Vector Addtion Systems with States

Finite state machine + finite number of counter C = {c1, . . . , cn}.
Operations: (No test to zero)

I ci := ci + 1
I ci > 0 / ci := ci − 1

Configuration: (q,V ) where q is a control state and V ∈ Nn

Initial configuration: (q0, 0) where 0 = 0n.

Transition relation:

(q1,V1)
op−−→(q2,V2) iff

I op = “ci := ci + 1”, and V2 = V1[ci ← (V1(ci ) + 1)]
I op = “ci > 0 / ci := ci − 1, and

(V1(ci ) > 0 and V2 = V1[ci ← (V1(ci )− 1)])
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From Multithreaded Programs to VASS

Associate a control state with each valuation of the globals

Associate a counter with each valuation of thread locals

A statement moving globals from g to g ′ and locals from ` to `′:

g
c`>0/c`:=c`−1 ; c`′ :=c`′+1−−−−−−−−−−−−−−−−−→ g ′

Creation of a new thread at initial state `:

g
c`:=c`+1−−−−−−→ g
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VASS: State Reachability

State reachability problem:

Given a state q, determine if a configuration (q,V ) is reachable,
for some V ∈ Nn (any one).

Coverability problem:

Given a configuration (q,V ), determine if a configuration (q,V ′)
is reachable, for some V ′ ≥ V . (We say that (q,V ) is coverable.)

EXSPACE-complete [Rackoff 78]

NB: Coverability can be reduced to State Reachability and vice-versa.
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Well Structured Systems
[Abdulla et al. 96], [Finkel, Schnoebelen, 00]

Let U be a universe.

Well-quasi ordering � over U: ∀c0, c1, c2, . . . , ∃i < j , ci � cj

⇒ Each (infinite) set has a finite minor set.

Let S ⊆ U. Upward-closure S = minimal subset of U s.t.
I S ⊆ S ,
I ∀x , y . (x ∈ S and x � y)⇒ y ∈ S .

A set is upward closed if S = S

Upward closed sets are definable by their minor sets
I Assume there is a function Min which associates a minor to each set.
I Assume pre(Min(S)) is computable for each set S .

Monotonicity: � is a simulation relation

∀c1, c
′
1, c2.

(
(c1 −→ c ′1 and c1 � c2)⇒ ∃c ′2. c2 −→ c ′2 and c ′1 � c ′2

)
A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 11 / 42



Key lemma

Lemma

The pre and pre∗ images of upward closed set are upward closed

1 Let S be an upward closed set.

2 Assume pre(S) is not upward closed.

3 Let c1 ∈ pre(S), and let c2 ∈ U such that c1 � c2 and c2 6∈ pre(S)

4 Let c ′1 ∈ S such that c1−→ c ′1
5 Monotonicity ⇒ there is a c ′2 such that c2−→ c ′2 and c ′1 � c ′2
6 S is upward closed ⇒ c ′2 ∈ S

7 ⇒ c2 ∈ pre(S), contradiction.

8 For pre∗: the union of upward closed sets is upward closed.
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Backward Reachability Analysis

Consider the increasing sequence X0 ⊆ X1 ⊆ X2 . . . defined by:

X0 = Min(S)

Xi+1 = Xi ∪Min(pre(Xi ))

Termination:

There is a index i ≥ 0 such that Xi+1 = Xi

The set pre∗(S) is upward closed ⇒ has a finite minor

Wait until a minor is collected

How long shall we wait?

Possibly very very long: Non primitive recursive in general
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The case of VASS

Usual ≤ order over N is a WQO (Dickson lemma)

Product of WQO’s is a WQO.

⇒ ≤ generalized to Nn is a WQO.

Upward-closed sets = finite disjunctions of
∧n

i=1 li ≤ ci , where li ∈ N
Computation of the Pre:

I op = “cj := cj + 1” : (
∧

i 6=j li ≤ ci ) ∧ (max(lj − 1, 0) ≤ cj)
I op = “cj > 0/cj − 1”: (

∧
i 6=j li ≤ ci ) ∧ (lj + 1 ≤ cj)

No test to zero, only guards of the form c > 0 ⇒ Monotonicity

⇒ Coverability is decidable.
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The case of Lossy Fifo Channel Systems

Subword relation over a finite alphabet is a WQO (Higman’s lemma)

Upward-closed sets = finite unions of

Σ∗a1Σ∗a2 · · · amΣ∗

Computation of the Pre:
I Send: Left concatenation + Upward closure
I Receive: Right derivation

Lossyness ⇒ Monotonicity

⇒ Coverability is decidable.
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Concurrent Programs with Procedures

Procedural program → Pushdown System (finite control + stack)

Concurrent program → Concurrent PDS’s (Multistack systems)

Two stacks can simulate a Turing tape.

Concurrent programs with 2 threads are Turing powerful.

⇒ Restrictions

I Classes of programs with particular features
I Particular kind of behaviors

(under-approximate analysis for bug detection)
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Asynchronous Programs

Synchronous calls

Usual procedure calls

Asynchronous calls
I Calls are stored and dispatched later by the scheduler
I They can be executed in any order

Event-driven programming (requests, responses)

Useful model: distributed systems, web servers, embedded systems
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Formal Models: Multiset Pushdown Systems

A task is a sequential (pushdown) process with dynamic task creation

Created tasks are stored in an unordered buffer (multiset)

Tasks run until completion

If the stack is empty, a task in moved from the multiset to the stack
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Difficulties

Unbounded buffer of tasks

The buffer is a multiset ⇒ can be encoded as counters

Need to combine somehow PDS with VASS

Stack ⇒ not Well Structured

How to get rid of the stack ?
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State Reachability of Multiset PDS

Theorem

The control state reachability problem for MPDS is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.

First decidability proof by K. Sen and M. Viswanathan, 2006
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Semi-linear Sets

Linear set over Nn is a set of the form

{~u + k1 ~v1 + · · ·+ km ~vm : k1, . . . , km ∈ N}

where ~u, ~v1, . . . , ~vm ∈ Nn

Semi-linear set = finite union of linear sets.

Examples:

I {(0, 0) + k(1, 1) : k ≥ 0} ≡ x1 = x2

I {(0, 0) + k(1, 2) : k ≥ 0} ≡ 2x1 = x2

I {(0, 3) + k(1, 1) : k ≥ 0} ≡ x1 + 3 = x2

I {(0, 3) + k1(0, 1) + k2(1, 1) : k ≥ 0} ≡ x1 + 3 ≤ x2

I {(0, 0, 0) + k1(1, 0, 1) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ x1 + x2 = x3

I {(0, 0, 3) + k1(1, 0, 2) + k2(0, 1, 1) : k1, k2 ≥ 0} ≡ 2x1 + x2 + 3 = x3

Theorem [Ginsburg, Spanier, 1966]

A set is semi-linear iff it is definable in Presburger arithmetics.
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Parikh’s image

Let Σ = {a1, . . . , an}.
Given a word w ∈ Σ∗, the Parikh image of w is:

φ(w) = (#a1(w), . . . ,#an(w)) ∈ Nn

Given a language L ⊆ Σ∗, φ(L) = {φ(w) : w ∈ L}
Examples:

I L1 = {anbn : n ≥ 0}, φ(L1) = {(x1, x2) : x1 = x2}
I L2 = {anbncn : n ≥ 0}, φ(L2) = {(x1, x2, x3) : x1 = x2 ∧ x2 = x3}
I L3 = (ab)∗ = {(ab)n : n ≥ 0}, φ(L3) = {(x1, x2) : x1 = x2}
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Semi-linear sets, CFL’s, and RL’s

Parikh’s Theorem (1966)

For every Context-Free Language L, φ(L) is a semi-linear set.

Proposition

For every semi-linear set S, there exists a Regular Language
L such that φ(L) = S.

Corollary

For every Context-Free Language L, there exists a Regular
language L′ such that φ(L) = φ(L′).

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 23 / 42



Semi-linear sets, CFL’s, and RL’s

Parikh’s Theorem (1966)

For every Context-Free Language L, φ(L) is a semi-linear set.

Proposition

For every semi-linear set S, there exists a Regular Language
L such that φ(L) = S.

Corollary

For every Context-Free Language L, there exists a Regular
language L′ such that φ(L) = φ(L′).
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From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



From Multiset PDS to VASS

q0 γ0 q1 γ1 q2

PDS computation with tasks creation

Pending tasks Multiset

M1

M2

q0, γ0

L1

=⇒∗ q1, ε

L1= Set of sequences of created tasks

L1 is a Context-Free Language

M1 is the Parikh image of L1

Parikh’s Theorem: Mi is definable by a finite state automaton Si

Construction of a VASS: Simulation of Si + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42



Message-Passing Programs with Procedures

Undecidable even for unbounded FIFO channels

Restrictions on

I Interaction between recursion and communication
(e.g., communication with empty stack)

I Kind of channels (e.g., lossy, unordered)
I Topology of the network

Decidable classes
[La Torre et al. TACAS’08], [Atig et al., CONCUR’08], ...
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Concurrent Programs: Under-approximate analysis

Parallel threads (with/without procedure calls)

Shared memory

Interleaving semantics (sequential consistency)

Model = Concurrent Pushdown Systems (Multistack systems)

Undecidability / Complexity

⇒ Consider only some schedules

Aim: detect bugs

What is a good concept for restricting the set of behaviors ?
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Context-Bounded Analysis

[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

w0 w1 w1 w2

u0 u1 u1

q0 q1

q1 q2

q2 q3

q3

Thread 1:

Thread 2:

Context 1 Context 2 Context 3 Context 4

Suitable for finding bugs in concurrent programs.

Concurrency bugs show up after a small number of context switches.

Infinite-state space: Unbounded sequential computations

Decidability ?
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Basic case: Pushdown system

Pushdown system = (Q, Γ,∆)

Configuration: (q,w) where q ∈ Q is a control state, w ∈ Γ is the stack
content.

Symbolic representation: A finite state automaton.

Computation of the predecessors/successors:

For every regular set of configurations C, the pre∗(C ) and
post∗(C ) are regular and effectively constructible.
[Büchi 62], ..., [B., Esparza, Maler, 97], ...

Reachability: Polynomial algorithms.

Can be generalized to model checking.
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Context-Bounded Analysis: Decidability

Consider a multi-stack systems with n stacks

Configuration: (q,w1, . . . ,wn), where q is a control state, wi ∈ Γi are stack
contents.

Symbolic representation: clusters (q,A1, . . . ,An), q a control state, Ai are
FSA over Γi

Given a cluster C , compute a set of clusters characterizing K -pre∗(C ) (resp.
K -post∗(C ))

Generalize the pre∗ / post∗ constructions for PDS

Enumerate sequences of the form q0i0q1i1q2i2 . . . iKqK iK+1, where qj ’s are
states, and ij ∈ {1, . . . , n} are threads identities.

Let XK+1 = C . Compute: for j = K back to 0

I A′j+1 = pre∗ij+1
(Xj+1[ij+1]) ∩ qjΓ

∗
i

I Xj = (qj ,A
j+1
1 , . . . ,A′j+1, . . . ,A

j+1
n )
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Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program ?

Yes: Use compositional reasoning !

[Lal, Reps, 2008]
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Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T1 and T2, and global variables X

Consider the problem: Can the program reach the state (q1, q2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

I I i = (I i1, . . . I
i
K ), the global states when Ti starts/is resumed

I O i = (O i
1, . . .O

i
K ), the global states when Ti terminates/is interrupted

Check that T1 can reach q1 by a computation that fulfills its interface

Check that T2 can reach q2 by a computation that fulfills its interface

Check that the interfaces are composable
I O1

j = I 2
j for every j ∈ {1, . . . ,K}

I O2
j = I 1

j+1 for every j ∈ {1, . . . ,K − 1}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31 / 42



Sequentialization: Code-to-code translation
Given a concurrent program P, construct a sequential program Ps such that
(q1, q2) is reachable under K -CB in P iff qwin in reachable in Ps .

Create 2K copies of the global variables Xj and X ′j , for j ∈ {1, . . . ,K}

Simulation of T1. At each round j ∈ {1, . . . ,K} do:

1 Assign ∗ to all variables of Xj (guesses the input I 1
j )

2 Copies Xj in X ′j , and runs by using X ′j as global variables
3 Choses nondeterministically the next context-switch point
4 Moves to round j + 1 (locals are not modified) and go to 1 (using new

copies of globals Xj+1 and X ′j+1).
5 Whenever T1 reaches q1, start simulating T2.

Simulation of T2. At each round j do:

1 Starts from the content of X ′j that was produced by T1 in its j-th round
2 Runs by using X ′j as global variables
3 Choses nondeterministically the next context-switch point
4 Checks that X ′j = Xj+1 (composability check), and move to round j + 1
5 If q2 is reachable at round K , then go to state qwin
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Dynamic Creation of Threads ?

[Atig, B., Qadeer, 09]

Problem

Bounding the number of context switches ⇒
bounding the number of threads.

⇒ Inadequate bounding concept for the dynamic case.

Each created thread must have a chance to be executed

New definition

Give to each thread a context switch budget

⇒ The number of context switches is bounded for each thread

⇒ The global number of context switches in a run is unbounded

NB: Generalization of Asynchronous Programs
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Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem

The K-bounded state reachability problem is EXPSPACE-complete.

Reduction to/from the coverability problem for Petri.
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Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35 / 42



Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35 / 42



Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).

Rule of the form: qγ −→ q′γ′

q

=⇒

(γ,b,Act)

q′ (γ′,b,Act)

Rule of the form: qγ −→ q′γ′ B γ′′

q

=⇒

(γ,b,Act)

(γ′′,K,Pen) q′ (γ′,b,Act)

Context switch (with b’> 0)

(γ,b,Act)

=⇒

(γ′,b’,Pen)

(γ′,b’,Act) (γ,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35 / 42



Reduction to coverability in PN

For every global store q ∈ Q, associate a place q.

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {1, . . . ,K}
of the active thread, associate a place (γ,b,Act).

For every stack configuration γ ∈ Γ ∪ {ε} and budget b ∈ {0, . . . ,K}
of a pending thread, associate a place (γ,b,Pen).
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Case 2: Dynamic Networks of Pushdown Systems

Decidable ?

Difficulty:

I Unbounded number of pending local contexts
I Can not use the same construction as for the case of finite state

threads. (This would need an unbounded number of places.)

Theorem

The K-bounded state reachability problem is in 2EXPSPACE.

Exponential reduction to the coverability problem in PN
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Making visible the interactions

Thread:

Envir. :

γ w1 w1 w2 w2 w3

q q1
Phase 1

γ1

q′
1

q2
Phase 2

γ2

q′
2 q′Phase 3

γ3

Construct a labeled pushdown automaton which:

I

Pushdown:
q′

1
q2

γ w1 w1 w2 w2 w3

q q1 q′
2 q′

(q1, q′1) (q2, q′2). . . γ1 . . . . . . γ2 . . . . . . γ3 . . .
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Constructing a regular interface

Pushdown:
q′

1
q2

γ

q q1 q′
2 q′

(q1, q′1) (q2, q′2). . . γ1 . . . . . . γ2 . . . . . . γ3 . . .

The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

Order of events is important

Some created threads may never be scheduled

⇒ Replace L by its downward closure w.r.t. the sub-word relation L ↓
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Constructing a regular interface (cont.)

The interactions of a thread with its environment can be characterized
by the downward closure L ↓ of the context-free language L

L ↓ is regular and effectively constructible ([Courcelle, 1991])

The size of an automaton for L ↓ can be exponential in the PDA
defining L
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Constructing the Petri Net

Use places for representing the control, one per state

Count pending tasks having some context switch budget (from 0 to
K ), and waiting to start at some state

For each created task, guess a sequence of K states (for context
switches)

At context switches, control is given to a pending task waiting for the
current state

Simulate a full sequential computation (following the FSA automaton
of the interface) until next transition (g , g ′)

During the simulation, each transition labelled γ corresponds to a
task creation

At a transition (g , g ′), leave the control at g (to some other thread)
and wait for g ′ (with a lower switch budget)
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Sequentialization for Dynamic Programs

VASS are sequential machines, so there is a precise sequentialization

What do we mean by “sequentialization” ?

We want to use pushdown systems

We do not want to expose locals: compositional reasoning

We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

Idea:
I Transform thread creation into procedure calls
I Allow some reordering using the idea of bounded interfaces
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Summary

Complex / Undecidable in general (communication + recursion)

Decidable class of concurrent programs: Asynchronous Programs

Reduction to coverability in VASS (Petri Nets)

Too complex to be scalable

Under-approximate analysis: Context-/Delay- Bounded Analysis

Sequentialization: Code-to-code translation to Sequential Programs

Other decidability results are based on “sequentialization”

e.g., Ordered Multi-pushdown systems [Atig, CONCUR’10].

Message-passing programs: Phase bounding [B., Emmi, TACAS’12]

Infinite behaviors (liveness bugs):

I K-context-bounded ultimately periodic behaviors
[Atig, B., Emmi, Lal, CAV’12]

I Scope-bounded analysis
[LaTorre, Napoli, CONCUR’11], [Atig, B., N. Kumar, Saivasan, ATVA’12]
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