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Concurrent Programs

e Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
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Concurrent Programs

o Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
e Communication

» Shared memory

* Notion of action atomicity
* Actions by a same threads are executed in the same order

(Sequential Consistency)
* Actions by different threads are interleaved non-deterministically
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Concurrent Programs

e Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
@ Communication

» Shared memory

* Notion of action atomicity
* Actions by a same threads are executed in the same order
(Sequential Consistency)
* Actions by different threads are interleaved non-deterministically
» Message passing

* Channels (queues)
* Unordered/FIFO ...
* Perfect/Lossy

o We assume finite data domain (e.g., booleans).
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Finite number of threads + Shared variables

o Fixed number of threads
@ lterative processes (no recursive procedure calls)

@ Finite number of variables
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Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)

= Decidable
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Finite number of threads + Shared variables

Fixed number of threads

lterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)
= Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS'77]
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Finite number of threads + bounded queues

@ Fixed number of threads

@ lterative processes (no recursive procedure calls)

@ Bounded channels
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Finite number of threads + bounded queues

Fixed number of threads
Iterative processes (no recursive procedure calls)
Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable
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Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable

Product grows exponentially in # threads and size of channels.
Reachability is decidable, and PSPACE-complete.
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Facing the state-space explosion

@ Partial order techniques

> Independent actions = commutable actions = many interleavings
» Explore representatives up to independent actions commutations
» Compact representations of sets of behaviors (Unfoldings)

Godefroid, Wolper, Peled, Holzman, Valmari, McMillan, Esparza, ...

@ Symbolic techniques

» Compact representations of sets of states (e.g., BDD)
» Encoding bounded-length computation + SAT solvers

Clarke, McMillan, Somenzi, Biere, Cimatti, ...
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Beyond the finite-state case

@ Unbounded (parametric/dynamic) number of threads

» Undecidable in general if threads Ids are allowed
» = Anonymous threads

@ Unbounded channels

» Undecidable in general in case of FIFO queues
» = Unordered queues (multisets), lossy queues
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Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain

e = Threads are anonymous (no way to refer to identities)
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Programs with Dynamic Creation of Threads

@ Finite number of variables

Finite data domain

= Threads are anonymous (no way to refer to identities)

lterative processes (no recursive procedure calls)

= Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state
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Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain
e = Threads are anonymous (no way to refer to identities)

@ lterative processes (no recursive procedure calls)

@ = Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state

@ Safety is reducible to state reachability in VASS / Coverability in PN
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Vector Addtion Systems with States

@ Finite state machine + finite number of counter C = {cy,..., ¢y}
@ Operations: (No test to zero)

» cii=c¢+1

»¢>0/¢c=c¢—1
e Configuration: (g, V) where ¢ is a control state and V € N”
e Initial configuration: (qgo,0) where 0 = 0".
@ Transition relation:

(g1, V1) =%(a2, Vo) iff
» op= ‘¢i:=¢ +1", and Vo = Vi[c; + (Va(c) +1)]

> op = “C,->O/C,'::C,'—1, and
(Vi(ci) > 0 and Vo = Vi[ci + (Va(c) —1)])
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From Multithreaded Programs to VASS

@ Associate a control state with each valuation of the globals
@ Associate a counter with each valuation of thread locals
@ A statement moving globals from g to g’ and locals from / to ¢':

C[>0/Cg::Cg—1;CZ/:=CZ/+1 /

>

@ Creation of a new thread at initial state ¢:

cpi=cp+1
E§—— 8
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VASS: State Reachability

@ State reachability problem:
Given a state q, determine if a configuration (q, V') is reachable,
for some V € N" (any one).
o Coverability problem:
Given a configuration (q, V), determine if a configuration (g, V')
is reachable, for some V' > V. (We say that (q, V) is coverable.)
EXSPACE-complete [Rackoff 78]
NB: Coverability can be reduced to State Reachability and vice-versa.
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Well Structured Systems
[Abdulla et al. 96], [Finkel, Schnoebelen, 00]
@ Let U be a universe.
e Well-quasi ordering = over U: Vg, c1,¢0,..., di <j, ¢ 2 ¢
e = Each (infinite) set has a finite minor set.

@ Let S C U. Upward-closure S = minimal subset of U s.t.
» SCS,
» Vx,y. (x€Sand x < y)=y€S.
@ A set is upward closed if S = S
@ Upward closed sets are definable by their minor sets
» Assume there is a function Min which associates a minor to each set.

> Assume pre(Min(S)) is computable for each set S.
@ Monotonicity: < is a simulation relation

Ver, o, . ((a — ¢f and ¢ 2 &) = 3¢5 &2 — 3 and ¢] = &)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 11 / 42



Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed
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Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.
@ Assume pre(S) is not upward closed.
© Let 1 € pre(S), and let ¢ € U such that c; < & and ¢ & pre(S)
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Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢
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@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢
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Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S
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Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

© Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S

@ = ¢ € pre(S), contradiction.
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Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

Let S be an upward closed set.

Assume pre(S) is not upward closed.

Let c1 € pre(S), and let ¢, € U such that ¢; < ¢ and ¢ & pre(S)
Let ¢ € S such that ¢; — ¢}

Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

S is upward closed = ¢ € S

= ¢ € pre(S), contradiction.

© 00000CO0CO

For pre*: the union of upward closed sets is upward closed.
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Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor

@ Wait until a minor is collected
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Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor

@ Wait until a minor is collected

@ How long shall we wait?
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Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor
e Wait until a minor is collected
@ How long shall we wait?

@ Possibly very very long: Non primitive recursive in general
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The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.

e = < generalized to N" is a WQO.
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The case of VASS

Usual < order over N is a WQO (Dickson lemma)
Product of WQO's is a WQO.

e = < generalized to N" is a WQO.

Upward-closed sets = finite disjunctions of A_; /i < ¢;, where [; € N

Computation of the Pre:
s op= "=l (Ayh <) A (max(l—1,0) < g)
»op="G>0/g—-1" (Aiylhi<c)n(j+1<q)
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The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)

@ Product of WQO's is a WQO.

e = < generalized to N" is a WQO.

@ Upward-closed sets = finite disjunctions of /\;’:1 I; < ¢, where [; € N

o Computation of the Pre:
»op="g:=qg+1": (N\4li<c)A(max(lj—1,0) <¢)
»op="G>0/g—-1" (Aiylhi<c)n(j+1<q)

@ No test to zero, only guards of the form ¢ > 0 = Monotonicity

@ = Coverability is decidable.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 14 / 42



The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 15 / 42



The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

o Upward-closed sets = finite unions of

Y*ar1X*ar - -ramX”

@ Computation of the Pre:

» Send: Left concatenation + Upward closure
> Receive: Right derivation
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The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)
o Upward-closed sets = finite unions of
Y*ar1X*ar - -ramX”

@ Computation of the Pre:

» Send: Left concatenation + Upward closure
> Receive: Right derivation

@ Lossyness = Monotonicity

@ = Coverability is decidable.
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Concurrent Programs with Procedures

@ Procedural program — Pushdown System (finite control + stack)

e Concurrent program — Concurrent PDS’s (Multistack systems)
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Concurrent Programs with Procedures

Procedural program — Pushdown System (finite control + stack)

e Concurrent program — Concurrent PDS’s (Multistack systems)

Two stacks can simulate a Turing tape.

@ Concurrent programs with 2 threads are Turing powerful.
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Concurrent Programs with Procedures

@ Procedural program — Pushdown System (finite control + stack)
e Concurrent program — Concurrent PDS’s (Multistack systems)
@ Two stacks can simulate a Turing tape.

@ Concurrent programs with 2 threads are Turing powerful.

@ = Restrictions

» Classes of programs with particular features
» Particular kind of behaviors
(under-approximate analysis for bug detection)
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Asynchronous Programs

@ Synchronous calls

Usual procedure calls
@ Asynchronous calls

> Calls are stored and dispatched later by the scheduler
» They can be executed in any order

e Event-driven programming (requests, responses)

@ Useful model: distributed systems, web servers, embedded systems
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Formal Models: Multiset Pushdown Systems

@ A task is a sequential (pushdown) process with dynamic task creation

o Created tasks are stored in an unordered buffer (multiset)

@ Tasks run until completion

If the stack is empty, a task in moved from the multiset to the stack
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Difficulties

Unbounded buffer of tasks

The buffer is a multiset = can be encoded as counters
Need to combine somehow PDS with VASS

Stack = not Well Structured

How to get rid of the stack ?
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State Reachability of Multiset PDS

Theorem
The control state reachability problem for MPDS is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.

First decidability proof by K. Sen and M. Viswanathan, 2006

A. Bouajjani (LIAFA, UP7)
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Semi-linear Sets
@ Linear set over N” is a set of the form
{4+ kgvi+ -+ kmVm © ki,...,km € N}
where G, v1,...,Vy, € N”
@ Semi-linear set = finite union of linear sets.

@ Examples:

» {(0,0)+k(L,1) : k>0} = x1=x

» {(0,0) + k(1,2) : k>0} = 2xy =x

» {(0,3)+k(1,1) : k>0} = x1+3=x

» {(0,3) + k1(0,1) + kx(1,1) : k>0} = x1+3<x

> {(O,O,O)—I—k1(1,0,1)—|—k2(0,1,1) : kl,kzZO} = X1 +Xo=X3

> {(0,0,3)+k1(1,0,2)+k2(0,1,1) : kl,k220} =2q+x+3=x3
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Semi-linear Sets

@ Linear set over N" is a set of the form

{d+kivi+ -+ kmVm : ki,..., km € N}

where 7, vq,...,vy, € N”
@ Semi-linear set = finite union of linear sets.

@ Examples:

@ Theorem [Ginsburg, Spanier, 1966]

» {(0,0)+k(L,1) : k>0} = x1=x

» {(0,0)+ k(1,2) : k>0} = 2xy =x

» {(0,3)+k(1,1) : k>0} = x1+3=x

> {(0,3)+k1( ,1)+k2(1,1) : kZO} = x1+3<x
4 {(0,0,0)—|—k1(1,0,1)+k2(0,1,1) : kl,kQZO}

> {(0,0,3)—|—k1(170,2)—|—k2(071,1) : kl,kQZO}

X1+ X0 = X3
2x1+x+3=x3

A set is semi-linear iff it is definable in Presburger arithmetics.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems
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Parikh's image

Let ¥ ={a1,...,an}.
Given a word w € ¥*, the Parikh image of w is:

¢(w) = (#a(w), ..., #a,(w)) € N

Given a language L C ¥, ¢(L) = {¢p(w) : w e L}

Examples:
» Ly ={a"b" : n>0}, o(L1) = {(x1,%) : x1 = x2}
> L, ={a"b"c" : n>0}, d(L2) = {(x1,x%,x3) : x1 =X Axo=x3}
> L3 = (ab)* = {(ab)” T n> 0}, ¢(L3) = {(Xl,Xg) X1 = Xz}
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Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.
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Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.

@ Proposition

For every semi-linear set S, there exists a Regular Language
L such that ¢(L) = S.

o Corollary

For every Context-Free Language L, there exists a Regular
language L' such that ¢(L) = ¢(L').
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From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Yo a1 71 aqz

Pending tasks Multiset
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From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset
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From Multiset PDS to VASS

qo 8 a1 Ba! az

(]
\ W

L,= Set of sequences of created tasks
Ly
do, Yo =" qu, € L; is a Context-Free Language

M; is the Parikh image of L;
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From Multiset PDS to VASS

az

Parikh's Theorem: M; is definable by a finite state automaton S;
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From Multiset PDS to VASS

qo Y0 a1 Ba! az

Parikh's Theorem: M; is definable by a finite state automaton S;

Construction of a VASS:  Simulation of S; + task consumption rules
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Message-Passing Programs with Procedures

@ Undecidable even for unbounded FIFO channels
@ Restrictions on

> Interaction between recursion and communication
(e.g., communication with empty stack)

» Kind of channels (e.g., lossy, unordered)

» Topology of the network

@ Decidable classes
[La Torre et al. TACAS'08], [Atig et al., CONCUR'08], ...
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Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
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Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Undecidability / Complexity

e = Consider only some schedules

o Aim: detect bugs
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Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Undecidability / Complexity

e = Consider only some schedules

o Aim: detect bugs

@ What is a good concept for restricting the set of behaviors ?
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Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1:  §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

@ Suitable for finding bugs in concurrent programs.

@ Concurrency bugs show up after a small number of context switches.
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Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1:  §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

Suitable for finding bugs in concurrent programs.

Infinite-state space: Unbounded sequential computations
Decidability ?

°
@ Concurrency bugs show up after a small number of context switches.
°
°
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Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [ is the stack
content.
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Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [ is the stack
content.

@ Symbolic representation: A finite state automaton.
@ Computation of the predecessors/successors:

For every regular set of configurations C, the pre*(C) and
post*(C) are regular and effectively constructible.
[Biichi 62], ..., [B., Esparza, Maler, 97], ...

@ Reachability: Polynomial algorithms.

@ Can be generalized to model checking.
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Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.
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Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, As,...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))
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Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, A1, ...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

@ Generalize the pre* / post* constructions for PDS

@ Enumerate sequences of the form qoioqii1qoh2 - . . ik Gk ik+1, Where g;'s are
states, and jj € {1,..., n} are threads identities.

@ Let Xki1 = C. Compute: for j = K back to 0
> Al = pre; (Xigalipal) N gy

i+1 i
> X = (g AT A A
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Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7
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Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7

Yes: Use compositional reasoning !

[Lal, Reps, 2008]
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Sequentialization under Context Bounding: Basic Idea

@ Consider a Program with 2 threads T; and T5, and global variables X
e Consider the problem: Can the program reach the state (g1, g2)
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Sequentialization under Context Bounding: Basic Idea

@ Consider a Program with 2 threads T; and T5, and global variables X
o Consider the problem: Can the program reach the state (q1, g2)

@ Round Robin thread scheduling. K = number of rounds

o Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted
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Check that T7 can reach g1 by a computation that fulfills its interface
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Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T; and T,, and global variables X
Consider the problem: Can the program reach the state (g1, g2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted

Check that T7 can reach g1 by a computation that fulfills its interface

Check that T, can reach g by a computation that fulfills its interface

Check that the interfaces are composable
> O = I? for every j € {1,...,K}
» 02 = Ijl_‘_1 for every j e {1,...,K -1}

J
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Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.
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Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

@ Create 2K copies of the global variables X; and XJ’ forje{l,...,K}
@ Simulation of Ty. At each round j € {1,..., K} do:

@ Assign * to all variables of X; (guesses the input Ijl)

@ Copies X; in X/, and runs by using X as global variables

© Choses nondeterministically the next context-switch point

@ Moves to round j + 1 (locals are not modified) and go to 1 (using new
copies of globals X1 and X/, ;).

© Whenever T reaches gy, start simulating T>.
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Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

@ Create 2K copies of the global variables X; and XJ’ forje{l,...,K}
@ Simulation of Ty. At each round j € {1,..., K} do:

@ Assign * to all variables of X; (guesses the input IJl)

@ Copies X; in X/, and runs by using X as global variables

© Choses nondeterministically the next context-switch point

@ Moves to round j + 1 (locals are not modified) and go to 1 (using new
copies of globals X1 and X/, ;).

© Whenever T reaches gy, start simulating T>.

@ Simulation of T,. At each round j do:

© Starts from the content of Xj’ that was produced by Tj in its j-th round
@ Runs by using XJ-’ as global variables

© Choses nondeterministically the next context-switch point

© Checks that X/ = Xj;1 (composability check), and move to round j + 1
© If g, is reachable at round K, then go to state quin
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Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]
Problem
@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed
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Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]
Problem
@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed

New definition

@ Give to each thread a context switch budget
@ = The number of context switches is bounded for each thread
@ = The global number of context switches in a run is unbounded

o NB: Generalization of Asynchronous Programs
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Case 1: Dynamic Networks of Finite-State Processes

Decidable ?
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Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem
The K-bounded state reachability problem is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.
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Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).
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of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

q (v,b,Act)
Rule of the form: gv — ¢'+' _— e
g (7.bAct)
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Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

@ For every stack configuration v € ' U {e} and budget b € {1,...,

of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,

of a pending thread, associate a place (v,b,Pen).

q9  (v,bAct)

V.

(v, K,Pen) g (7,b,Act)

Rule of the form: gy — ¢+ > "
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Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).
(7v,b,Act) (v',b’,Pen)

Context switch (with b'> 0) —

(v',b’,Act) (7,b-1,Pen)
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Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
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Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)
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Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)

Theorem
The K-bounded state reachability problem is in 2EXPSPACE. J

Exponential reduction to the coverability problem in PN
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Making visible the interactions

v wi wi w2 wa w3
Thread: -—-—y—3-—>- e e——pe—>e —pe——pe—e—e

N

. : - E : : B
Envir. : q Phase 1 Qi—y Cﬁ Phase 2 0 q§ Phase 3 q,
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Making visible the interactions

vy wy w1 w2 w2 w3
Thread: «—e—e—e—>-.

O

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

Y wi wy w2 w2 w3
Pushdown: e—pe—pe—3.—>- A e T ) —p P
q q a1 92 9% q
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vy wy w1 w2 w2 w3
Thread: «—e—e—e—>-.

O

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

v NG AN 2 (g5, qp) 2 s
Pushdown: e e e e e
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Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

v M (g, q1) " "2 (g2, q5) 2 NG
Pushdown: —)—)—)—)-—1)-,—)—)—)—)-—2)-/—)—)—)—)/
q @ il a2 a2 q
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Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

R IS Wi(g, g )WL -2 e W2 (g, gryW2 -ee 3 W3
Pushdown: s—pe—pe—pe—p ey e e 2oy
aq a il a2 a2 q
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Constructing a regular interface

Y1 .. / cee Y2 e / e Y3 e
v lae) 2 (eq) P

q a 92 % q

W

vy ..
Pushdown: .—
q
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Constructing a regular interface

.")/ RS 4 N (q17<7{) e Y2 e (q2,qé) el Y3
Pushdown: e e A e o St
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)
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Constructing a regular interface

.’y RS 4 N (q17CI{) e Y2 e (q27q£) el Y3
Pushdown: e e T A e e S o
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled
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Constructing a regular interface

.")/ RS 4 N (q17CI{) e Y2 e (q27q&) el Y3
Pushdown: e e T A e e S o
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled

= Replace L by its downward closure w.r.t. the sub-word relation L |
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Constructing a regular interface (cont.)

@ The interactions of a thread with its environment can be characterized
by the downward closure L | of the context-free language L

e L | is regular and effectively constructible ([Courcelle, 1991])

@ The size of an automaton for L | can be exponential in the PDA
defining L
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Constructing the Petri Net

@ Use places for representing the control, one per state

e Count pending tasks having some context switch budget (from 0 to
K), and waiting to start at some state

o For each created task, guess a sequence of K states (for context
switches)

@ At context switches, control is given to a pending task waiting for the
current state

e Simulate a full sequential computation (following the FSA automaton
of the interface) until next transition (g, g’)

@ During the simulation, each transition labelled ~ corresponds to a
task creation

o At a transition (g, g’), leave the control at g (to some other thread)
and wait for g’ (with a lower switch budget)
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Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
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Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?
@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.
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Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

@ In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

o Idea:

» Transform thread creation into procedure calls
» Allow some reordering using the idea of bounded interfaces

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42



Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)
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Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)

@ Too complex to be scalable

@ Under-approximate analysis: Context-/Delay- Bounded Analysis

@ Sequentialization: Code-to-code translation to Sequential Programs

@ Other decidability results are based on “sequentialization”
e.g., Ordered Multi-pushdown systems [Atig, CONCUR'10].

@ Message-passing programs: Phase bounding [B., Emmi, TACAS'12]
@ Infinite behaviors (liveness bugs):

» K-context-bounded ultimately periodic behaviors
[Atig, B., Emmi, Lal, CAV'12]
» Scope-bounded analysis
[LaTorre, Napoli, CONCUR'11], [Atig, B., N. Kumar, Saivasan, ATVA'12]
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