Verification of Concurrent Systems

Ahmed Bouajjani

LIAFA, University Paris Diderot — Paris 7

MOVEP'12, CIRM, December 2012

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

Concurrent Programs

e Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads

@ Communication

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

December 2012

2/ 42

Concurrent Programs

o Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
e Communication

» Shared memory

* Notion of action atomicity
* Actions by a same threads are executed in the same order

(Sequential Consistency)
* Actions by different threads are interleaved non-deterministically

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 2 /42

Concurrent Programs

o Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
e Communication

» Shared memory

* Notion of action atomicity

* Actions by a same threads are executed in the same order
(Sequential Consistency)

* Actions by different threads are interleaved non-deterministically

» Message passing

* Channels (queues)
* Unordered/FIFO ...
* Perfect/Lossy

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 2 /42

Concurrent Programs

e Parallel threads (with/without procedure calls)
e Static/Dynamic number of threads
@ Communication

» Shared memory

* Notion of action atomicity
* Actions by a same threads are executed in the same order
(Sequential Consistency)
* Actions by different threads are interleaved non-deterministically
» Message passing

* Channels (queues)
* Unordered/FIFO ...
* Perfect/Lossy

o We assume finite data domain (e.g., booleans).

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 2 /42

Finite number of threads + Shared variables

o Fixed number of threads
@ lterative processes (no recursive procedure calls)

@ Finite number of variables

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 3 /42

Finite number of threads + Shared variables

Fixed number of threads

Iterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)

= Decidable

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 3 /42

Finite number of threads + Shared variables

Fixed number of threads

lterative processes (no recursive procedure calls)

Finite number of variables

A variable has a finite number of possible values

= Finite product of finite-state systems (threads + variables)
= Decidable

Product grows exponentially in # threads and # variables.

Reachability is decidable, and PSPACE-complete.
[Kozen, FOCS'77]

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 3 /42

Finite number of threads + bounded queues

@ Fixed number of threads

@ lterative processes (no recursive procedure calls)

@ Bounded channels

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 4 /42

Finite number of threads + bounded queues

Fixed number of threads
Iterative processes (no recursive procedure calls)
Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 4 /42

Finite number of threads + bounded queues

Fixed number of threads

Iterative processes (no recursive procedure calls)

Bounded channels

= Finite number of possible channel contents

= Finite product of finite-state systems (threads + channels)
= Decidable

Product grows exponentially in # threads and size of channels.
Reachability is decidable, and PSPACE-complete.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 4 /42

Facing the state-space explosion

@ Partial order techniques

> Independent actions = commutable actions = many interleavings
» Explore representatives up to independent actions commutations
» Compact representations of sets of behaviors (Unfoldings)

Godefroid, Wolper, Peled, Holzman, Valmari, McMillan, Esparza, ...

@ Symbolic techniques

» Compact representations of sets of states (e.g., BDD)
» Encoding bounded-length computation + SAT solvers

Clarke, McMillan, Somenzi, Biere, Cimatti, ...

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 5/ 42

Beyond the finite-state case

@ Unbounded (parametric/dynamic) number of threads

» Undecidable in general if threads Ids are allowed
» = Anonymous threads

@ Unbounded channels

» Undecidable in general in case of FIFO queues
» = Unordered queues (multisets), lossy queues

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 6 /42

Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain

e = Threads are anonymous (no way to refer to identities)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 7/ 42

Programs with Dynamic Creation of Threads

@ Finite number of variables

Finite data domain

= Threads are anonymous (no way to refer to identities)

lterative processes (no recursive procedure calls)

= Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 7/ 42

Programs with Dynamic Creation of Threads

@ Finite number of variables
@ Finite data domain
e = Threads are anonymous (no way to refer to identities)

@ lterative processes (no recursive procedure calls)

@ = Counting abstraction

» Finite number of possible local states /4,...,¢,,
» Count how many threads are in a given local state

@ Safety is reducible to state reachability in VASS / Coverability in PN

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 7/ 42

Vector Addtion Systems with States

@ Finite state machine + finite number of counter C = {cy,..., ¢y}
@ Operations: (No test to zero)

» cii=c¢+1

»¢>0/¢c=c¢—1
e Configuration: (g, V) where ¢ is a control state and V € N”
e Initial configuration: (qgo,0) where 0 = 0".
@ Transition relation:

(g1, V1) =%(a2, Vo) iff
» op= ‘¢i:=¢ +1", and Vo = Vi[c; + (Va(c) +1)]

> op = “C,->O/C,'::C,'—1, and
(Vi(ci) > 0 and Vo = Vi[ci + (Va(c) —1)])

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 8 /42

From Multithreaded Programs to VASS

@ Associate a control state with each valuation of the globals
@ Associate a counter with each valuation of thread locals
@ A statement moving globals from g to g’ and locals from / to ¢':

C[>0/Cg::Cg—1;CZ/:=CZ/+1 /

>

@ Creation of a new thread at initial state ¢:

cpi=cp+1
E§—— 8

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 9 /42

VASS: State Reachability

@ State reachability problem:
Given a state q, determine if a configuration (q, V') is reachable,
for some V € N" (any one).
o Coverability problem:
Given a configuration (q, V), determine if a configuration (g, V')
is reachable, for some V' > V. (We say that (q, V) is coverable.)
EXSPACE-complete [Rackoff 78]
NB: Coverability can be reduced to State Reachability and vice-versa.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 10 / 42

Well Structured Systems
[Abdulla et al. 96], [Finkel, Schnoebelen, 00]
@ Let U be a universe.
e Well-quasi ordering = over U: Vg, c1,¢0,..., di <j, ¢ 2 ¢
e = Each (infinite) set has a finite minor set.

@ Let S C U. Upward-closure S = minimal subset of U s.t.
» SCS,
» Vx,y. (x€Sand x < y)=y€S.
@ A set is upward closed if S = S
@ Upward closed sets are definable by their minor sets
» Assume there is a function Min which associates a minor to each set.

> Assume pre(Min(S)) is computable for each set S.
@ Monotonicity: < is a simulation relation

Ver, o, . ((a — ¢f and ¢ 2 &) = 3¢5 &2 — 3 and ¢] = &)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 11 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.
@ Assume pre(S) is not upward closed.
© Let 1 € pre(S), and let ¢ € U such that c; < & and ¢ & pre(S)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

@ Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

© Let S be an upward closed set.

@ Assume pre(S) is not upward closed.

@ Let ¢ € pre(S), and let ¢x € U such that ¢; < ¢ and ¢, & pre(S)
Q Let ¢f € S such that ¢; — ¢

@ Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

@ S is upward closed = ¢; € S

@ = ¢ € pre(S), contradiction.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Key lemma

Lemma
The pre and pre* images of upward closed set are upward closed

Let S be an upward closed set.

Assume pre(S) is not upward closed.

Let c1 € pre(S), and let ¢, € U such that ¢; < ¢ and ¢ & pre(S)
Let ¢ € S such that ¢; — ¢}

Monotonicity = there is a ¢} such that c; — ¢} and ¢] < ¢}

S is upward closed = ¢ € S

= ¢ € pre(S), contradiction.

© 00000CO0CO

For pre*: the union of upward closed sets is upward closed.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 12 / 42

Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor

@ Wait until a minor is collected

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012

13 / 42

Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor

@ Wait until a minor is collected

@ How long shall we wait?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 13 / 42

Backward Reachability Analysis

Consider the increasing sequence Xp C X3 C X5... defined by:
L Xo = I\/Iin(S)
e Xii11 = X; UMin(pre(X;))

Termination:
There is a index i > 0 such that X; 1 = X;

@ The set pre*(S) is upward closed = has a finite minor
e Wait until a minor is collected
@ How long shall we wait?

@ Possibly very very long: Non primitive recursive in general

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 13 / 42

The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)
@ Product of WQO's is a WQO.

e = < generalized to N" is a WQO.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

December 2012

14 / 42

The case of VASS

Usual < order over N is a WQO (Dickson lemma)
Product of WQO's is a WQO.

e = < generalized to N" is a WQO.

Upward-closed sets = finite disjunctions of A_; /i < ¢;, where [; € N

Computation of the Pre:
s op= "=l (Ayh <) A (max(l—1,0) < g)
»op="G>0/g—-1" (Aiylhi<c)n(j+1<q)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 14 / 42

The case of VASS

@ Usual < order over N is a WQO (Dickson lemma)

@ Product of WQO's is a WQO.

e = < generalized to N" is a WQO.

@ Upward-closed sets = finite disjunctions of /\;’:1 I; < ¢, where [; € N

o Computation of the Pre:
»op="g:=qg+1": (N\4li<c)A(max(lj—1,0) <¢)
»op="G>0/g—-1" (Aiylhi<c)n(j+1<q)

@ No test to zero, only guards of the form ¢ > 0 = Monotonicity

@ = Coverability is decidable.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 14 / 42

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 15 / 42

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)

o Upward-closed sets = finite unions of

Y*ar1X*ar - -ramX”

@ Computation of the Pre:

» Send: Left concatenation + Upward closure
> Receive: Right derivation

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 15 / 42

The case of Lossy Fifo Channel Systems

@ Subword relation over a finite alphabet is a WQO (Higman's lemma)
o Upward-closed sets = finite unions of
Y*ar1X*ar - -ramX”

@ Computation of the Pre:

» Send: Left concatenation + Upward closure
> Receive: Right derivation

@ Lossyness = Monotonicity

@ = Coverability is decidable.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 15 / 42

Concurrent Programs with Procedures

@ Procedural program — Pushdown System (finite control + stack)

e Concurrent program — Concurrent PDS’s (Multistack systems)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 16 / 42

Concurrent Programs with Procedures

Procedural program — Pushdown System (finite control + stack)

e Concurrent program — Concurrent PDS’s (Multistack systems)

Two stacks can simulate a Turing tape.

@ Concurrent programs with 2 threads are Turing powerful.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 16 / 42

Concurrent Programs with Procedures

@ Procedural program — Pushdown System (finite control + stack)
e Concurrent program — Concurrent PDS’s (Multistack systems)
@ Two stacks can simulate a Turing tape.

@ Concurrent programs with 2 threads are Turing powerful.

@ = Restrictions

» Classes of programs with particular features
» Particular kind of behaviors
(under-approximate analysis for bug detection)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 16 / 42

Asynchronous Programs

@ Synchronous calls

Usual procedure calls
@ Asynchronous calls

> Calls are stored and dispatched later by the scheduler
» They can be executed in any order

e Event-driven programming (requests, responses)

@ Useful model: distributed systems, web servers, embedded systems

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 17 / 42

Formal Models: Multiset Pushdown Systems

@ A task is a sequential (pushdown) process with dynamic task creation

o Created tasks are stored in an unordered buffer (multiset)

@ Tasks run until completion

If the stack is empty, a task in moved from the multiset to the stack

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 18 / 42

Difficulties

Unbounded buffer of tasks

The buffer is a multiset = can be encoded as counters
Need to combine somehow PDS with VASS

Stack = not Well Structured

How to get rid of the stack ?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 19 / 42

State Reachability of Multiset PDS

Theorem
The control state reachability problem for MPDS is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.

First decidability proof by K. Sen and M. Viswanathan, 2006

A. Bouajjani (LIAFA, UP7)

Verification of Concurrent Systems December 2012 20 / 42

Semi-linear Sets
@ Linear set over N” is a set of the form
{4+ kgvi+ -+ kmVm © ki,...,km € N}
where G, v1,...,Vy, € N”
@ Semi-linear set = finite union of linear sets.

@ Examples:

» {(0,0)+k(L,1) : k>0} = x1=x

» {(0,0) + k(1,2) : k>0} = 2xy =x

» {(0,3)+k(1,1) : k>0} = x1+3=x

» {(0,3) + k1(0,1) + kx(1,1) : k>0} = x1+3<x

> {(O,O,O)—I—k1(1,0,1)—|—k2(0,1,1) : kl,kzZO} = X1 +Xo=X3

> {(0,0,3)+k1(1,0,2)+k2(0,1,1) : kl,k220} =2q+x+3=x3

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 21/ 42

Semi-linear Sets

@ Linear set over N" is a set of the form

{d+kivi+ -+ kmVm : ki,..., km € N}

where 7, vq,...,vy, € N”
@ Semi-linear set = finite union of linear sets.

@ Examples:

@ Theorem [Ginsburg, Spanier, 1966]

» {(0,0)+k(L,1) : k>0} = x1=x

» {(0,0)+ k(1,2) : k>0} = 2xy =x

» {(0,3)+k(1,1) : k>0} = x1+3=x

> {(0,3)+k1(,1)+k2(1,1) : kZO} = x1+3<x
4 {(0,0,0)—|—k1(1,0,1)+k2(0,1,1) : kl,kQZO}

> {(0,0,3)—|—k1(170,2)—|—k2(071,1) : kl,kQZO}

X1+ X0 = X3
2x1+x+3=x3

A set is semi-linear iff it is definable in Presburger arithmetics.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

December 2012 21/ 42

Parikh's image

Let ¥ ={a1,...,an}.
Given a word w € ¥*, the Parikh image of w is:

¢(w) = (#a(w), ..., #a,(w)) € N

Given a language L C ¥, ¢(L) = {¢p(w) : w e L}

Examples:
» Ly ={a"b" : n>0}, o(L1) = {(x1,%) : x1 = x2}
> L, ={a"b"c" : n>0}, d(L2) = {(x1,x%,x3) : x1 =X Axo=x3}
> L3 = (ab)* = {(ab)” T n> 0}, ¢(L3) = {(Xl,Xg) X1 = Xz}

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 22 /42

Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 23 /42

Semi-linear sets, CFL's, and RL's

@ Parikh’'s Theorem (1966)

For every Context-Free Language L, ¢(L) is a semi-linear set.

@ Proposition

For every semi-linear set S, there exists a Regular Language
L such that ¢(L) = S.

o Corollary

For every Context-Free Language L, there exists a Regular
language L' such that ¢(L) = ¢(L').

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 23 /42

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Yo a1 71 aqz

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Yo a1 71 aqz

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

PDS computation with tasks creation

A A

qo Y0 a1 Ba! az

Pending tasks Multiset

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

qo 8 a1 Ba! az

(]
\ W

L,= Set of sequences of created tasks
Ly
do, Yo =" qu, € L; is a Context-Free Language

M; is the Parikh image of L;

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

az

Parikh's Theorem: M; is definable by a finite state automaton S;

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

From Multiset PDS to VASS

qo Y0 a1 Ba! az

Parikh's Theorem: M; is definable by a finite state automaton S;

Construction of a VASS: Simulation of S; + task consumption rules

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 24 / 42

Message-Passing Programs with Procedures

@ Undecidable even for unbounded FIFO channels
@ Restrictions on

> Interaction between recursion and communication
(e.g., communication with empty stack)

» Kind of channels (e.g., lossy, unordered)

» Topology of the network

@ Decidable classes
[La Torre et al. TACAS'08], [Atig et al., CONCUR'08], ...

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 25/ 42

Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 26 / 42

Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Undecidability / Complexity

e = Consider only some schedules

o Aim: detect bugs

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 26 / 42

Concurrent Programs: Under-approximate analysis

o Parallel threads (with/without procedure calls)

@ Shared memory

@ Interleaving semantics (sequential consistency)

@ Model = Concurrent Pushdown Systems (Multistack systems)
@ Undecidability / Complexity

e = Consider only some schedules

o Aim: detect bugs

@ What is a good concept for restricting the set of behaviors ?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 26 / 42

Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1: §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

@ Suitable for finding bugs in concurrent programs.

@ Concurrency bugs show up after a small number of context switches.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 27 / 42

Context-Bounded Analysis
[Qadeer, Rehof, 2005]

The number of context switches in a computation is bounded

W w w w

Thread 1: §p ——on—3 23 3

Thread 2: AL Ny G ... >
Context 1 Context 2 Context 3 Context 4

Suitable for finding bugs in concurrent programs.

Infinite-state space: Unbounded sequential computations
Decidability ?

°
@ Concurrency bugs show up after a small number of context switches.
°
°

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 27 / 42

Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [is the stack
content.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 28 / 42

Basic case: Pushdown system

@ Pushdown system = (Q,T,A)

o Configuration: (g, w) where g € Q is a control state, w € [is the stack
content.

@ Symbolic representation: A finite state automaton.
@ Computation of the predecessors/successors:

For every regular set of configurations C, the pre*(C) and
post*(C) are regular and effectively constructible.
[Biichi 62], ..., [B., Esparza, Maler, 97], ...

@ Reachability: Polynomial algorithms.

@ Can be generalized to model checking.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 28 / 42

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 29 / 42

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, As,...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 29 / 42

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, As,...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

@ Generalize the pre* / post* constructions for PDS

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 29 / 42

Context-Bounded Analysis: Decidability

@ Consider a multi-stack systems with n stacks

o Configuration: (g, wi,...,w,), where g is a control state, w; € I'; are stack
contents.

@ Symbolic representation: clusters (g, A1, ...,A,), g a control state, A; are
FSA over I;

@ Given a cluster C, compute a set of clusters characterizing K-pre*(C) (resp.
K-post*(C))

@ Generalize the pre* / post* constructions for PDS

@ Enumerate sequences of the form qoioqii1qoh2 - . . ik Gk ik+1, Where g;'s are
states, and jj € {1,..., n} are threads identities.

@ Let Xki1 = C. Compute: for j = K back to 0
> Al = pre; (Xigalipal) N gy

i+1 i
> X = (g AT A A

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 29 / 42

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 30/ 42

Sequentialization under Context Bounding

Question:

Is it possible to reduce CBA of a Concurrent Program to the
Reachability Analysis of a Sequential Program 7

Yes: Use compositional reasoning !

[Lal, Reps, 2008]

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012

30 / 42

Sequentialization under Context Bounding: Basic Idea

@ Consider a Program with 2 threads T; and T5, and global variables X
e Consider the problem: Can the program reach the state (g1, g2)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization under Context Bounding: Basic Idea

@ Consider a Program with 2 threads T; and T5, and global variables X
e Consider the problem: Can the program reach the state (g1, g2)

@ Round Robin thread scheduling. K = number of rounds

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization under Context Bounding: Basic Idea

@ Consider a Program with 2 threads T; and T5, and global variables X
o Consider the problem: Can the program reach the state (q1, g2)

@ Round Robin thread scheduling. K = number of rounds

o Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T; and T,, and global variables X
Consider the problem: Can the program reach the state (g1, g2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted

Check that T7 can reach g1 by a computation that fulfills its interface

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T; and T,, and global variables X
Consider the problem: Can the program reach the state (g1, g2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted

Check that T7 can reach g1 by a computation that fulfills its interface

Check that T, can reach g by a computation that fulfills its interface

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization under Context Bounding: Basic Idea

Consider a Program with 2 threads T; and T,, and global variables X
Consider the problem: Can the program reach the state (g1, g2)

Round Robin thread scheduling. K = number of rounds

Guess an interface of each thread:

> 1" =(If,... i), the global states when T; starts/is resumed
» 0" =(0y,...0k), the global states when T; terminates/is interrupted

Check that T7 can reach g1 by a computation that fulfills its interface

Check that T, can reach g by a computation that fulfills its interface

Check that the interfaces are composable
> O = I? for every j € {1,...,K}
» 02 = Ijl_‘_1 for every j e {1,...,K -1}

J

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 31/ 42

Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 32 /42

Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

@ Create 2K copies of the global variables X; and XJ’ forje{l,...,K}
@ Simulation of Ty. At each round j € {1,..., K} do:

@ Assign * to all variables of X; (guesses the input Ijl)

@ Copies X; in X/, and runs by using X as global variables

© Choses nondeterministically the next context-switch point

@ Moves to round j + 1 (locals are not modified) and go to 1 (using new
copies of globals X1 and X/, ;).

© Whenever T reaches gy, start simulating T>.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 32 /42

Sequentialization: Code-to-code translation

Given a concurrent program P, construct a sequential program Ps such that
(g1, g2) is reachable under K-CB in P iff gy, in reachable in Ps.

@ Create 2K copies of the global variables X; and XJ’ forje{l,...,K}
@ Simulation of Ty. At each round j € {1,..., K} do:

@ Assign * to all variables of X; (guesses the input IJl)

@ Copies X; in X/, and runs by using X as global variables

© Choses nondeterministically the next context-switch point

@ Moves to round j + 1 (locals are not modified) and go to 1 (using new
copies of globals X1 and X/, ;).

© Whenever T reaches gy, start simulating T>.

@ Simulation of T,. At each round j do:

© Starts from the content of Xj’ that was produced by Tj in its j-th round
@ Runs by using XJ-’ as global variables

© Choses nondeterministically the next context-switch point

© Checks that X/ = Xj;1 (composability check), and move to round j + 1
© If g, is reachable at round K, then go to state quin

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 32 /42

Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]
Problem
@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012

33 /42

Dynamic Creation of Threads 7

[Atig, B., Qadeer, 09]
Problem
@ Bounding the number of context switches =
bounding the number of threads.
@ = Inadequate bounding concept for the dynamic case.
Each created thread must have a chance to be executed

New definition

@ Give to each thread a context switch budget
@ = The number of context switches is bounded for each thread
@ = The global number of context switches in a run is unbounded

o NB: Generalization of Asynchronous Programs

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012

33 /42

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

Case 1: Dynamic Networks of Finite-State Processes

Decidable ?

Theorem
The K-bounded state reachability problem is EXPSPACE-complete. J

Reduction to/from the coverability problem for Petri.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 34 /42

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35/ 42

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).

q (v,b,Act)
Rule of the form: gv — ¢'+' _— e
g (7.bAct)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35/ 42

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

@ For every stack configuration v € ' U {e} and budget b € {1,...,

of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,

of a pending thread, associate a place (v,b,Pen).

q9 (v,bAct)

V.

(v, K,Pen) g (7,b,Act)

Rule of the form: gy — ¢+ > "

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012

K}

K}

35/ 42

Reduction to coverability in PN

@ For every global store g € Q, associate a place gq.

e For every stack configuration v € ' U {¢} and budget b € {1,...,K}
of the active thread, associate a place (,b,Act).

@ For every stack configuration v € ' U {¢} and budget b € {0,...,K}
of a pending thread, associate a place (v,b,Pen).
(7v,b,Act) (v',b’,Pen)

Context switch (with b'> 0) —

(v',b’,Act) (7,b-1,Pen)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 35/ 42

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 36 / 42

Case 2: Dynamic Networks of Pushdown Systems

@ Decidable ?
o Difficulty:

» Unbounded number of pending local contexts
» Can not use the same construction as for the case of finite state
threads. (This would need an unbounded number of places.)

Theorem
The K-bounded state reachability problem is in 2EXPSPACE. J

Exponential reduction to the coverability problem in PN

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 36 / 42

Making visible the interactions

v wi wi w2 wa w3
Thread: -—-—y—3-—>- e e——pe—>e —pe——pe—e—e

N

. : - E : : B
Envir. : q Phase 1 Qi—y Cﬁ Phase 2 0 q§ Phase 3 q,

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 37 /42

Making visible the interactions

vy wy w1 w2 w2 w3
Thread: «—e—e—e—>-.

O

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

Y wi wy w2 w2 w3
Pushdown: e—pe—pe—3.—>- A e T) —p P
q q a1 92 9% q

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 37 /42

Making visible the interactions

vy wy w1 w2 w2 w3
Thread: «—e—e—e—>-.

O

@ Construct a labeled pushdown automaton which:

» Guesses the effect of the environment on the states

v NG AN 2 (g5, qp) 2 s
Pushdown: e e e e e
q q Qi a2 9 q

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 37 /42

Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

v M (g, q1) " "2 (g2, q5) 2 NG
Pushdown: —)—)—)—)-—1)-,—)—)—)—)-—2)-/—)—)—)—)/
q @ il a2 a2 q

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 37 /42

Making visible the interactions

w1 wi W wa w3

Thread: «—e—e—e—>- ey ey i S S
n : : 72 : :

Envir. q Phase 1 —s g Phase 2 0@ ; Phase 3 f

@ Construct a labeled pushdown automaton which:

» Makes visible (as transition labels) the created threads

R IS Wi(g, g)WL -2 e W2 (g, gryW2 -ee 3 W3
Pushdown: s—pe—pe—pe—p ey e e 2oy
aq a il a2 a2 q

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 37 /42

Constructing a regular interface

Y1 .. / cee Y2 e / e Y3 e
v lae) 2 (eq) P

q a 92 % q

W

vy ..
Pushdown: .—
q

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems

Constructing a regular interface

.")/ RS 4 N (q17<7{) e Y2 e (q2,qé) el Y3
Pushdown: e e A e o St
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 38 /42

Constructing a regular interface

.’y RS 4 N (q17CI{) e Y2 e (q27q£) el Y3
Pushdown: e e T A e e S o
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 38 /42

Constructing a regular interface

.")/ RS 4 N (q17CI{) e Y2 e (q27q&) el Y3
Pushdown: e e T A e e S o
q q a0 a2 9 q

@ The set of traces L characterizes the interaction between the thread
and its environment (L is a CFL)

Observations: For the state reachability problem

@ Order of events is important

@ Some created threads may never be scheduled

= Replace L by its downward closure w.r.t. the sub-word relation L |

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 38 /42

Constructing a regular interface (cont.)

@ The interactions of a thread with its environment can be characterized
by the downward closure L | of the context-free language L

e L | is regular and effectively constructible ([Courcelle, 1991])

@ The size of an automaton for L | can be exponential in the PDA
defining L

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 39 /42

Constructing the Petri Net

@ Use places for representing the control, one per state

e Count pending tasks having some context switch budget (from 0 to
K), and waiting to start at some state

o For each created task, guess a sequence of K states (for context
switches)

@ At context switches, control is given to a pending task waiting for the
current state

e Simulate a full sequential computation (following the FSA automaton
of the interface) until next transition (g, g’)

@ During the simulation, each transition labelled ~ corresponds to a
task creation

o At a transition (g, g’), leave the control at g (to some other thread)
and wait for g’ (with a lower switch budget)

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 40 / 42

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization

@ What do we mean by “sequentialization” ?

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?
@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

@ In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42

Sequentialization for Dynamic Programs

@ VASS are sequential machines, so there is a precise sequentialization
@ What do we mean by “sequentialization” ?

@ We want to use pushdown systems

@ We do not want to expose locals: compositional reasoning

@ We want to obtain a program of the same type: we should not add
other data structures, variables, etc.

@ In this context, a precise sequentialization of dynamic programs
cannot exist (we cannot encode VASS with PDS)

Under-approximate sequentialization [B., Emmi, Parlato, 2011]

o Idea:

» Transform thread creation into procedure calls
» Allow some reordering using the idea of bounded interfaces

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 41/ 42

Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

Summary

@ Complex / Undecidable in general (communication + recursion)
@ Decidable class of concurrent programs: Asynchronous Programs
@ Reduction to coverability in VASS (Petri Nets)

@ Too complex to be scalable

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

Summary

@ Complex / Undecidable in general (communication + recursion)

Decidable class of concurrent programs: Asynchronous Programs

Reduction to coverability in VASS (Petri Nets)
@ Too complex to be scalable

@ Under-approximate analysis: Context-/Delay- Bounded Analysis

Sequentialization: Code-to-code translation to Sequential Programs

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)

@ Too complex to be scalable

@ Under-approximate analysis: Context-/Delay- Bounded Analysis

@ Sequentialization: Code-to-code translation to Sequential Programs

@ Other decidability results are based on “sequentialization”
e.g., Ordered Multi-pushdown systems [Atig, CONCUR'10].

A. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)

@ Too complex to be scalable

@ Under-approximate analysis: Context-/Delay- Bounded Analysis

@ Sequentialization: Code-to-code translation to Sequential Programs

@ Other decidability results are based on “sequentialization”
e.g., Ordered Multi-pushdown systems [Atig, CONCUR'10].

@ Message-passing programs: Phase bounding [B., Emmi, TACAS'12]

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

Summary

@ Complex / Undecidable in general (communication + recursion)

@ Decidable class of concurrent programs: Asynchronous Programs

@ Reduction to coverability in VASS (Petri Nets)

@ Too complex to be scalable

@ Under-approximate analysis: Context-/Delay- Bounded Analysis

@ Sequentialization: Code-to-code translation to Sequential Programs

@ Other decidability results are based on “sequentialization”
e.g., Ordered Multi-pushdown systems [Atig, CONCUR'10].

@ Message-passing programs: Phase bounding [B., Emmi, TACAS'12]
@ Infinite behaviors (liveness bugs):

» K-context-bounded ultimately periodic behaviors
[Atig, B., Emmi, Lal, CAV'12]
» Scope-bounded analysis
[LaTorre, Napoli, CONCUR'11], [Atig, B., N. Kumar, Saivasan, ATVA'12]

. Bouajjani (LIAFA, UP7) Verification of Concurrent Systems December 2012 42 / 42

