Runtime Verification for Real-Time Automotive
Embedded Software

S. Cotard, S. Faucou, J.-L. Béchennec, A. Queudet, Y. Trinquet

x Lu I"'université
nantes
nam angers
le mans

sssssssssssssssssssssssssssssssssss

RENAULT

10th school of Modelling and Verifying Parallel processes (MOVEP)

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

Motivating example

no ni
b

Safety constraint: T, requires the data from by, but also reads by
in order to perform a plausibility check. T» has to read the same
instance of data.

Requirement: consistency checking

Correctness property: when T, starts reading, the buffers are
synchronized and stay synchronized until T, completes its
execution

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

A possible solution: diversification

Design and
implementation

\ 4
011001101

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

A possible solution: diversification

Errors \

Design and
implementation

\ 4
011001101

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

A possible solution: diversification

Errors \

Design and
implementation

Monitoring gnd recovery

\ 4
011001101

101100111

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

A possible solution: diversification

Errors \

Design and
implementation

Monitoring gnd recovery

\ 4
011001101

101100111

Runtime Verification for Real-Time Automotive Embedded Software

Introduction

Context

Objectives
@ based on formal methods

@ compatible with functional and industrial constraints

e small and deterministic detection latency

o small and deterministic overheads (execution time, memory
footprint)

e compatible with multi-tiers system design process (the
provided source code is not always modifiable)

Proposed solution

@ runtime verification

@ injection of monitors in the kernel

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Formal methods

Model M of a system S Property

@ Model checking: all runs of M satisfy ¢ 7 (design time)
@ Tests: some runs of S satisfy ¢ ? (design time)

@ Runtime verification: does this run satisfy ¢ ? (online
analysis)
— generate a monitor from M and ¢ that outputs a
verdict in {T, L, 7}

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: step 1

[Bauer et al, 2011] solution

%& For ¢ and —¢
WS T) Compute NBAS
A Buohi automata 2) Emptiness checking per state
P e E? (derived F)
A i hiomaa ‘jd) 3) Compute NFAs using F
Aﬂﬁ’\pﬁszﬂﬁfjfra/“i‘ﬁ 4) Compute DFAs
F,,ﬁ?,”e'%%iMA‘}ZZZ;e 5) DFAs synchronization

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: stepl

Property

¢ = G ((m_t2.firstb0 V m_t2.firstbl) = (m_sync.sync U m_t2.begin))

1) Computation of the NBAs

true
m_t2.begin Aqﬁ Aﬁqb
~(%)
—m_t2.begin
4» m-sync.sync . —~m_t2.begin
—m_-t2.begin /\—|m:sy}rc.sync
m_t2.begin m_sync.sync —m_t2.begin

A—m_sync.sync
- Y Y true

®

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: stepl

Property
¢ = G ((m_t2.firstb0 V m_t2.firstbl) = (m_sync.sync U m_t2.begin))

1) Computation of the NBAs

true
m_t2.begin A¢ Aﬂqb
~(s)
—m_t2.begin
% m_sync.sync 2 begi
—m_t2.begin /\—|m, -Oe8In
—m_sync.sync
m_t2.begin m_sync.sync —m_t2.begin

A=m_sync.sync

true
2) Emptiness checking per state

F? = {SOa 51} F = {S(/)’ 51753}

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: stepl

Property
¢ = G ((m-t2.firstb0 V m_t2.firstbl) —> (m_sync.sync U m_t2.begin))

3) Computing NFAs using F and completes automata

~

m_t2.begin A@ true A0

m_sync.sync " 5 i
yne.sy —m_t2.begin m_t2.begin

—m_sync.sync

brue

—m_t2.begin
A—m_sync.sync

—m_t2.begin
A—m_sync.syng

m_sync.sync —m_t2.begin

m_t2.begin

—m_t2.begin
A—m_sync.sync

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: stepl

¢ = G ((m_t2.firstb0 V m_t2.firstbl) = (m_sync.sync U m_t2.begin))

4) Determinization — Composition — Minimization

_t2.begil .
m-t2.begin —~m_t2.begin A m_sync.sync

—m_t2.begin A m_sync.sync

m_t2.begin
—m_t2.begin A ~m_sync.sync

—m_t2.begin A ~m_sync.sync

true

The intermediate monitor M™ reacts to changes in the values of
the atomic propositions used in ¢

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: stepl

Intermediate monitor (M™)

The intermediate monitor is the Moore machine given by
M™ = (Q™,i™, —m,y™) over 247 the set of intercepted events

Q™ is the finite set of states

i™ is the initial state

—mC (Q™ x 24P) » Q™ is the transition function
Y™ C QM Bz ={T,L,7} is the output function

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: step2

Input: system model + properties

S115 10

500, S11

m_sync: buffers
synchronization m_t2: T2 behavior

G ((m_t2.firstbO Vv m_t2.firstbl) = (m_sync.sync U m_t2.begin))

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: step2

Model of the system (A®)

The model of the system is given by A° = (Q°, i*,—) over X°,
the set of intercepted events

@ Q° is the finite set of states
@ /° € @ is the initial state
@ —:C (Q° x X°) — Q7 is the transition function

We denote A C Q° — 24P, the labeling function that maps each
state of the DFA to the set of atomic proposition true in this state.

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: step2

Final monitor computation (M")

The final monitor is defined by M' = (Q’, /', —, ") over £°

Y Q/ — QS X Qm

o ' = (i%,i™)

o »C (@ xX%)—
where (g°,q™) % (r°,r
u C A5(r®) and v™(q™)

ey CQ — B3
where 7/(¢°,¢™) = 7"(q"™)

) iff ¢*54r° and g™ ,,r™ and

Runtime Verification for Real-Time Automotive Embedded Software

Runtime Verification

Our approach: runtime verification: step2

Output: a monitor

511, 1o S11, 10

S11

511, S00

500, 20

S11, o

500, 21

o, 21, ro

Runtime Verification for Real-Time Automotive Embedded Software

Monitor synthesis/injection in the RTOS kernel

Enforcer: A tool for monitor synthesis

@ Inconclusive state
@ True state
A5 © False state

System model
(transition system)

e

’,\ ’,\ . ““WEnforcer M’ Output s?urEes
@ @ ® .enf file tool Monitor (*.c *.h)
(Transition table)

ltl_rule rp\
Properties ‘Q

(LTL formulae) ﬁ,oﬂ

Itl_rule = "Always (a Until b)"

LTL — NBA — Intermediate Moore machine — Monitor

~
step 1 step 2

Runtime Verification for Re me Automotive Embedded Software

Monitor synthesis/injection in the RTOS kernel

Injection of the monitors in the kernel

The Trampoline compilation chain (open-source implementation of
AUTOSAR 0S)

a V

System configuration application configuration
sources

*h 0110
v —_— 0101
-~ RTOS and application Binary Code

sources

*h

monitor sources

Runtime Verification for Real-Time Automotive Embedded Software

Monitor synthesis/injection in the RTOS kernel

Architecture

True occurs False occurs

Event Event analysis Monitor update A
I

I

RN Event Event Monitor Transitiol /- ’: -7
Ty table Handler/, ..., update table /=~

Runtime Verification for Real-Time Automotive Embedded Software

Evaluation

Evaluation: computation overhead

SendMessage

SendMessage with ActivateTask
SendMessage with SetEvent
ReceiveMessage

Monitoring of 1 monitor

0 10 20 30

Execution time (ps)

@ target running at 60 MHz
@ composition of the overhead

e 1lus to identify the event
e 2.4/15 to react per monitor interested in the event

Runtime Verification for Re me Automotive Embedded Software

Evaluation: memory footprint

Evaluation

depends on the monitor
3 optimizations

have been proposed

Transition table Monitor descriptor Code size
ROM RAM ROM/RAM |
152 bytes (monitor update)
tant
30 bytes 15 bytes constan

constant per monitor

16 bytes (event handler)
depends on the number

of monitors per event

Runtime Verification for Real-Time Automotive Embedded Software

Evaluation

Conclusion

@ approach has been implemented in a tool: Enforcer
o freely available (see paper for URL)

@ results show that runtime verification can be affordable for
(static) industrial real-time embedded systems
o kernel instrumention allows to achieve (guaranteed) low
detection latency
e static code and data generation allows to achieve low
execution time overhead
o system designer can pay time for memory

o future works

e compute the theoretical bound on the size of the monitors
(given the size of M and ¢)
e multicore extension (not only a matter of implementation)

Runtime Verification for Real-Time Automotive Embedded Software

Evaluation

Thank you for your attention

Runtime Verification for Real-Time Automotive Embedded Software

	Introduction
	Runtime Verification
	Monitor synthesis/injection in the RTOS kernel
	Evaluation

