
Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Runtime Verification for Real-Time Automotive
Embedded Software
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Motivating example
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Safety constraint: T2 requires the data from b1, but also reads b0

in order to perform a plausibility check. T2 has to read the same
instance of data.

Requirement: consistency checking

Correctness property: when T2 starts reading, the buffers are
synchronized and stay synchronized until T2 completes its
execution
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A possible solution: diversification
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Context

Objectives

based on formal methods

compatible with functional and industrial constraints

small and deterministic detection latency
small and deterministic overheads (execution time, memory
footprint)
compatible with multi-tiers system design process (the
provided source code is not always modifiable)

Proposed solution

runtime verification

injection of monitors in the kernel
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Formal methods

Model M of a system S
A

BC ev1

ev2

ev3

ev4

Property

φ

Model checking: all runs of M satisfy φ ? (design time)

Tests: some runs of S satisfy φ ? (design time)

Runtime verification: does this run satisfy φ ? (online
analysis)
−→ generate a monitor from M and φ that outputs a

verdict in {>,⊥, ?}
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Our approach: runtime verification: step 1

[Bauer et al, 2011 ] solution
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Input : LTL property

LTL property

Non deterministic
Buchï automata

Emptiness checking
(per state)

Non deterministic
Finite Automata

Deterministic 
Finite Automata

Output : Monitor
Finite State Machine

For φ and ¬φ
1) Compute NBAs

2) Emptiness checking per state

(derived F)

3) Compute NFAs using F

4) Compute DFAs

5) DFAs synchronization
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Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

1) Computation of the NBAs
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Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

3) Computing NFAs using F and completes automata
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Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

4) Determinization −→ Composition −→ Minimization
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The intermediate monitor Mm reacts to changes in the values of
the atomic propositions used in φ
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Our approach: runtime verification: step1

Intermediate monitor (Mm)

The intermediate monitor is the Moore machine given by
Mm = (Qm, im,→m, γ

m) over 2AP , the set of intercepted events

Qm is the finite set of states

im is the initial state

→m⊂ (Qm × 2AP) 7→ Qm is the transition function

γm ⊂ Qm 7→ B3 = {>,⊥, ?} is the output function
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Our approach: runtime verification: step2

Input: system model + properties
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G ((m t2.firstb0∨m t2.firstb1) =⇒ (m sync .sync Um t2.begin))
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Our approach: runtime verification: step2

Model of the system (As)

The model of the system is given by As = (Qs , i s ,→s) over Σs ,
the set of intercepted events

Qs is the finite set of states

i s ∈ Qs is the initial state

→s⊂ (Qs × Σs) 7→ Qs is the transition function

We denote λs ⊂ Qs 7→ 2AP , the labeling function that maps each
state of the DFA to the set of atomic proposition true in this state.
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Our approach: runtime verification: step2

Final monitor computation (M ′)

The final monitor is defined by M ′ = (Q ′, i ′,→, γ′) over Σs

Q ′ = Qs × Qm

i ′ = (i s , im)

→⊂ (Q ′ × Σs) 7→ Q ′

where (qs , qm)
σ→ (r s , rm) iff qs σ→sr s and qm u→mrm and

u ⊆ λs(r s) and γm(qm) =?

γ′ ⊂ Q ′ 7→ B3

where γ′(qs , qm) = γm(qm)
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Our approach: runtime verification: step2

Output: a monitor
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Enforcer : A tool for monitor synthesis

Enforcer
tool

System model
(transition system)

Properties
(LTL formulae)

ltl_rule = "Always (a Until b)"

Output sources 
Monitor (*.c *.h)
(Transition table)

Inconclusive state 
True state 
False state 

M �

ltl rule

As

*.enf file

LTL→ NBA→ Intermediate Moore machine︸ ︷︷ ︸
step 1

→ Monitor︸ ︷︷ ︸
step 2
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Injection of the monitors in the kernel

The Trampoline compilation chain (open-source implementation of
AUTOSAR OS)
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RTOS and application 
sources

System configuration application configuration 
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monitor 
description

monitor sources

Enforcer

Binary Code

*.c *.h

*.c *.h
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Architecture
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table
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Handler
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update

Transition
table

Monitor updateEvent analysisEvent True occurs False occurs
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Evaluation: computation overhead

Execution time (µs)

0 10 20 30

SendMessage

SendMessage with ActivateTask

SendMessage with SetEvent

ReceiveMessage

Monitoring of 1 monitor

15.4

24

18.5

10

3.4

target running at 60 MHz

composition of the overhead

1µs to identify the event
2.4µs to react per monitor interested in the event
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Evaluation: memory footprint

Transition table Monitor descriptor Code size

ROM RAM ROM/RAM

30 bytes 15 bytes

152 bytes (monitor update)

constant

depends on the monitor constant per monitor 16 bytes (event handler)

3 optimizations depends on the number

have been proposed of monitors per event
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Conclusion

approach has been implemented in a tool: Enforcer

freely available (see paper for URL)

results show that runtime verification can be affordable for
(static) industrial real-time embedded systems

kernel instrumention allows to achieve (guaranteed) low
detection latency
static code and data generation allows to achieve low
execution time overhead
system designer can pay time for memory

future works

compute the theoretical bound on the size of the monitors
(given the size of M and φ)
multicore extension (not only a matter of implementation)
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Thank you for your attention
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