
Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Runtime Verification for Real-Time Automotive
Embedded Software

S. Cotard, S. Faucou, J.-L. Béchennec, A. Queudet, Y. Trinquet

10th school of Modelling and Verifying Parallel processes (MOVEP)

Runtime Verification for Real-Time Automotive Embedded Software 1/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Motivating example

T0

T1

T2b0

b1

s00

r10

r20

s11

r21

Safety constraint: T2 requires the data from b1, but also reads b0

in order to perform a plausibility check. T2 has to read the same
instance of data.

Requirement: consistency checking

Correctness property: when T2 starts reading, the buffers are
synchronized and stay synchronized until T2 completes its
execution

Runtime Verification for Real-Time Automotive Embedded Software 2/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

A possible solution: diversification

T0

T1

T2b0

b1

s00

r10

r20

s11

r21

Design and

implementation

011001101

Runtime Verification for Real-Time Automotive Embedded Software 3/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

A possible solution: diversification

T0

T1

T2b0

b1

s00

r10

r20

s11

r21

Design and

implementation

011001101

Errors

Runtime Verification for Real-Time Automotive Embedded Software 3/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

A possible solution: diversification

T0

T1

T2b0

b1

s00

r10

r20

s11

r21

Design and

implementation

011001101

Errors

Monitoring and recovery

101100111

Runtime Verification for Real-Time Automotive Embedded Software 3/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

A possible solution: diversification

T0

T1

T2b0

b1

s00

r10

r20

s11

r21

Design and

implementation

011001101

Errors

Monitoring and recovery

101100111

Runtime Verification for Real-Time Automotive Embedded Software 3/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Context

Objectives

based on formal methods

compatible with functional and industrial constraints

small and deterministic detection latency
small and deterministic overheads (execution time, memory
footprint)
compatible with multi-tiers system design process (the
provided source code is not always modifiable)

Proposed solution

runtime verification

injection of monitors in the kernel

Runtime Verification for Real-Time Automotive Embedded Software 4/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Formal methods

Model M of a system S
A

BC ev1

ev2

ev3

ev4

Property

φ

Model checking: all runs of M satisfy φ ? (design time)

Tests: some runs of S satisfy φ ? (design time)

Runtime verification: does this run satisfy φ ? (online
analysis)
−→ generate a monitor from M and φ that outputs a

verdict in {>,⊥, ?}

Runtime Verification for Real-Time Automotive Embedded Software 5/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step 1

[Bauer et al, 2011 ] solution

φ

φ¬φ

A¬φ

F¬φ

Â¬φ

Ã¬φ Ãφ

Âφ

Fφ

Aφ

Mm

Input : LTL property

LTL property

Non deterministic
Buchï automata

Emptiness checking
(per state)

Non deterministic
Finite Automata

Deterministic 
Finite Automata

Output : Monitor
Finite State Machine

For φ and ¬φ
1) Compute NBAs

2) Emptiness checking per state

(derived F)

3) Compute NFAs using F

4) Compute DFAs

5) DFAs synchronization

Runtime Verification for Real-Time Automotive Embedded Software 6/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

1) Computation of the NBAs

Aφ

S0

S1

m t2.begin

m sync .sync

m t2.begin m sync .sync

A¬φ
S

′
0

S
′
1

S
′
2

true

¬m t2.begin

¬m t2.begin

¬m t2.begin
∧¬m sync .sync

¬m t2.begin
∧¬m sync .sync

true

Runtime Verification for Real-Time Automotive Embedded Software 7/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

1) Computation of the NBAs

Aφ

S0

S1

m t2.begin

m sync .sync

m t2.begin m sync .sync

A¬φ
S

′
0

S
′
1

S
′
2

true

¬m t2.begin

¬m t2.begin

¬m t2.begin
∧¬m sync .sync

¬m t2.begin
∧¬m sync .sync

true

2) Emptiness checking per state

Fφ = {S0,S1} F¬φ = {S ′
0, S

′
1,S

′
2}

Runtime Verification for Real-Time Automotive Embedded Software 7/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

3) Computing NFAs using F and completes automata

Âφ

S0

S1

S2

m t2.begin

m sync .sync

m t2.begin m sync .sync

¬m t2.begin
∧¬m sync .sync

¬m t2.begin
∧¬m sync .sync

true

Â¬φ

S
′
0

S
′
1 S

′
2

S
′
3

true

¬m t2.begin

¬m t2.begin

¬m t2.begin
∧¬m sync .sync

¬m t2.begin
∧¬m sync .sync

true

m t2.begin

true

Runtime Verification for Real-Time Automotive Embedded Software 7/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step1

Property

φ = G ((m t2.firstb0 ∨ m t2.firstb1) =⇒ (m sync.sync Um t2.begin))

4) Determinization −→ Composition −→ Minimization

init

bad

St2

m t2.begin ¬m t2.begin ∧m sync .sync

m t2.begin

¬m t2.begin ∧m sync .sync

¬m t2.begin ∧ ¬m sync .sync

¬m t2.begin ∧ ¬m sync .sync

true

The intermediate monitor Mm reacts to changes in the values of
the atomic propositions used in φ

Runtime Verification for Real-Time Automotive Embedded Software 7/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step1

Intermediate monitor (Mm)

The intermediate monitor is the Moore machine given by
Mm = (Qm, im,→m, γ

m) over 2AP , the set of intercepted events

Qm is the finite set of states

im is the initial state

→m⊂ (Qm × 2AP) 7→ Qm is the transition function

γm ⊂ Qm 7→ B3 = {>,⊥, ?} is the output function

Runtime Verification for Real-Time Automotive Embedded Software 7/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step2

Input: system model + properties

sync

nosyncinprog

s11, r10

s00

s00, s11

r10

s00

s11

m sync : buffers
synchronization

begin

firstb0

firstb1

r20

r21

r21

r20

m t2: T 2 behavior

G ((m t2.firstb0∨m t2.firstb1) =⇒ (m sync .sync Um t2.begin))

Runtime Verification for Real-Time Automotive Embedded Software 8/18

T0

T1

T2b0

b1

s00

r10

r20

s11

r21



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step2

Model of the system (As)

The model of the system is given by As = (Qs , i s ,→s) over Σs ,
the set of intercepted events

Qs is the finite set of states

i s ∈ Qs is the initial state

→s⊂ (Qs × Σs) 7→ Qs is the transition function

We denote λs ⊂ Qs 7→ 2AP , the labeling function that maps each
state of the DFA to the set of atomic proposition true in this state.

Runtime Verification for Real-Time Automotive Embedded Software 9/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step2

Final monitor computation (M ′)

The final monitor is defined by M ′ = (Q ′, i ′,→, γ′) over Σs

Q ′ = Qs × Qm

i ′ = (i s , im)

→⊂ (Q ′ × Σs) 7→ Q ′

where (qs , qm)
σ→ (r s , rm) iff qs σ→sr s and qm u→mrm and

u ⊆ λs(r s) and γm(qm) =?

γ′ ⊂ Q ′ 7→ B3

where γ′(qs , qm) = γm(qm)

Runtime Verification for Real-Time Automotive Embedded Software 10/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Our approach: runtime verification: step2

Output: a monitor

??

? ??

⊥

s11, r10

s00

r20

r21

s00, r20

s11, r10

r21

s00, r21

s11, r10

r20

r20, r21, r10

s11

s00

s11, s00

r10

r20, r21

Runtime Verification for Real-Time Automotive Embedded Software 11/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Enforcer : A tool for monitor synthesis

Enforcer
tool

System model
(transition system)

Properties
(LTL formulae)

ltl_rule = "Always (a Until b)"

Output sources 
Monitor (*.c *.h)
(Transition table)

Inconclusive state 
True state 
False state 

M �

ltl rule

As

*.enf file

LTL→ NBA→ Intermediate Moore machine︸ ︷︷ ︸
step 1

→ Monitor︸ ︷︷ ︸
step 2

Runtime Verification for Real-Time Automotive Embedded Software 12/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Injection of the monitors in the kernel

The Trampoline compilation chain (open-source implementation of
AUTOSAR OS)

*.oil

*.enf

*.c *.h 0110
0101

RTOS and application 
sources

System configuration application configuration 
sources

monitor 
description

monitor sources

Enforcer

Binary Code

*.c *.h

*.c *.h

Runtime Verification for Real-Time Automotive Embedded Software 13/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Architecture

T0

T1

T2b0

b1

Monitoring service

s00
r10 s11 r21

r21

false true

Event
table

Event
Handler

Monitor
update

Transition
table

Monitor updateEvent analysisEvent True occurs False occurs

Runtime Verification for Real-Time Automotive Embedded Software 14/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Evaluation: computation overhead

Execution time (µs)

0 10 20 30

SendMessage

SendMessage with ActivateTask

SendMessage with SetEvent

ReceiveMessage

Monitoring of 1 monitor

15.4

24

18.5

10

3.4

target running at 60 MHz

composition of the overhead

1µs to identify the event
2.4µs to react per monitor interested in the event

Runtime Verification for Real-Time Automotive Embedded Software 15/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Evaluation: memory footprint

Transition table Monitor descriptor Code size

ROM RAM ROM/RAM

30 bytes 15 bytes

152 bytes (monitor update)

constant

depends on the monitor constant per monitor 16 bytes (event handler)

3 optimizations depends on the number

have been proposed of monitors per event

Runtime Verification for Real-Time Automotive Embedded Software 16/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Conclusion

approach has been implemented in a tool: Enforcer

freely available (see paper for URL)

results show that runtime verification can be affordable for
(static) industrial real-time embedded systems

kernel instrumention allows to achieve (guaranteed) low
detection latency
static code and data generation allows to achieve low
execution time overhead
system designer can pay time for memory

future works

compute the theoretical bound on the size of the monitors
(given the size of M and φ)
multicore extension (not only a matter of implementation)

Runtime Verification for Real-Time Automotive Embedded Software 17/18



Introduction Runtime Verification Monitor synthesis/injection in the RTOS kernel Evaluation

Thank you for your attention

Runtime Verification for Real-Time Automotive Embedded Software 18/18


	Introduction
	Runtime Verification
	Monitor synthesis/injection in the RTOS kernel
	Evaluation

