
Unfolding based model checking

Javier Esparza

Faculty of Computer Science
Technical University of Munich

esparza@in.tum.de

Joint work with: Keijo Heljanko
Aalto University, School of Science

Keijo.Heljanko@tkk.fi

December 4, 2012

Tutorial material

I Tutorial mainly based on the book

Esparza, J. and Heljanko, K.: Unfoldings –
A Partial-Order Approach to Model Checking.
EATCS Monographs in Theoretical Computer Science,
Springer-Verlag, ISBN 978-3-540-77425-9, 172 p.

I Final book draft available from:
http://www.model.in.tum.de/~esparza/bookunf.html

http://www.model.in.tum.de/~esparza/bookunf.html

Model Checking Parallel (Concurrent) Systems

Modelling

Property

Formalized
propertyModel checking

Formalization
of property

Parallel System

System model

toy prog. lang. ...)

(Petri net, comm. autom.,

Kripke structure

State space
exploration

ψM |= ψ ?M

Many success stories

I Microprocessor design: Several major microprocessor
manufacturers use model checking methods as a part of their
design process

I Design of Communication Protocols: Model checkers have been
used as rapid prototyping systems for new data-communications
protocols under standardization

I Safety Critical Systems: Model checking is used to find bugs in
many safety critical systems

I Mission Critical Software: NASA is model checking code used by
the space program

I Operating Systems: Microsoft is using model checking to verify
the correct use of locking primitives in Windows device drivers

The state explosion problem

Modelling

Property

Formalized
propertyModel checking

Formalization
of property

Parallel System

System model

toy prog. lang. ...)

(Petri net, comm. autom.,

Kripke structure

State space
exploration

ψM |= ψ ?M

The state explosion problem

I A concurrent system with N sequential components, each of
them with K states, may have up to K N reachable states.

I Hinders conventional model checking even for relatively small
systems

I Approaches to fight state explosion:

Abstraction: Aggregate “similar” states.
(CEGAR ...)

Reduction : Remove “irrelevant” states.
(Partial order reduction ...)

Compression: Find “compact” representations
of the state space.
(BDDs, Unfoldings)

Abstraction and reduction lose information (on purpose),
compression does not.

Compression techniques

Binary Decision Diagrams. Exploit regularity.
Identical components.
Simple communication topology: array, ring, . . .

Unfoldings. Exploit concurrency.
Loosely coupled but possibly heterogeneous components.

Compression techniques

Binary Decision Diagrams. Exploit regularity.
Identical components.
Simple communication topology: array, ring, . . .

Unfoldings. Exploit concurrency.
Loosely coupled but possibly heterogeneous components.

The unfolding method

Sequential systems

Model:
transition systems

Semantics:
computation tree
(unfolding of the TS)

Algorithmic principle:
search in trees

Concurrent systems

Model:
products of transition systems
(represented as Petri nets)

Semantics:
(concurrent) unfolding

Algorithmic principle:
search in unfoldings

Transition systems

A transition system is a tuple A = 〈S,T , α, β, is〉, where
I S is a set of states,
I T is a set of transitions,
I α : T → S associates to each transition its source state,
I β : T → S associates to each transition its target state, and
I is ∈ S is the initial state

Example
Transition system A = 〈S,T , α, β, is〉 where

I S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5},
I α(t1) = s1, β(t1) = s2, . . ., β(t5) = s1,
I is = s1

s1

s2 s3t5

s4

t1 t2

t3 t4

Unfolding transition systems: Computation tree

s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2

Algorithmic Principle: Search in trees

s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2

Products of transition systems

A product of transition systems is a tuple 〈A1, . . . ,An,T〉 where
I A1, . . . ,An are transition systems called components, and
I T is a synchronization constraint

A synchronization constraint is a set of tuples of the form
〈u1,u2, . . .un〉 where ui is either

I a transition of Ai , or
I the special idling symbol ε

Example: 〈t1, ε, ε, t2〉

The tuples of T are called global transitions.

A tuple 〈s1, s2, . . . sn〉 of local states is called a global state.

Running example

s3

t3 t4

t2t1

s4

t5 s2

u1

r2

u2

r3

T = { 〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉 }

s1 r1

u3

Peterson’s mutex algorithm
REQ0

REQ1

b0:=T

b1:=T

t:=0

t:=1

b1=F

b0=F

ENT0

ENT1

b0:=F

b1:=F

t=1

t=0

b0=T

b1=T

t=1

b0:=F

b1:=F

t:=0

b0=F

b1=F

t=0

b0:=T

b1:=T

t:=1

t:=1t:=0

Petri nets

I Excellent for visualizing products!
I Lots of useful established terminology ...

Petri net representation of products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

Global transition −→ Petri net transition
Initial global state −→ Initial marking

Reachable global state −→ Reachable marking

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

〈t4, u2〉〈t3, u2〉

s4 r3r3 s4

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Unfolding products

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

s1

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Places of the unfolding
are labelled with places
of the net
bbbbbbbbbbb
bbbbbbbbbb

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

I Places of the unfolding
are labelled with places
of the net
bbbbbbbbbbb
bbbbbbbbbb

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

I Transitions of the unfolding
are called events.
They are labelled with
transitions of the net

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

I Reachable markings
of the unfolding
are labeled with
global states
of the product

The Unfolding

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

I Product, net and
unfolding are
beh. equivalent
for all the usual
equivalence notions

The Unfolding

No cycles
No place with two
or more input arcs
No disjoint paths
from same place
to same transition r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

The Unfolding

No cycles
No place with two
or more input arcs
No disjoint paths
from same place
to same transition r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

The Unfolding

No cycles
No place with two
or more input arcs
No disjoint paths
from same place
to same transition r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

The Unfolding

No cycles
No place with two
or more input arcs
No disjoint paths
from same place
to same transition r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Unfoldings are synchronisations of trees

No cycles
No place with two
or more input arcs
No disjoint paths
from same place
to same transition r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Causality, conflict, and concurrency

Let x and y be two nodes of an unfolding.
I x is a causal predecessor of y , denoted by x < y , if there is a

(non-empty) path from x to y .
I x and y are in conflict, denoted by x#y , if there are proper paths

from some place z to x and y that exit z by different arcs.
I x and y are concurrent, denoted by x co y , if neither x ≤ y nor

x > y nor x co y .

Proposition
A set of places of an unfolding can be simultaneously marked if and
only if its elements are pairwise concurrent.

Causality, conflict, and concurrency

1 ≤ 12
10 # 15
11 co 7 r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Configurations

A set C of events is a configuration if
I it is causally closed

(if e ∈ C and e′ < e then e′ ∈ C), and
I conflict-free

(no two events of C are in conflict)

Proposition
A set of events of an unfolding can be fired if and only if it is a
configuration.

The set of causal predecessors of an events is its past.

The past of an event is a configuration, also called the local
configuration of the event.

Configurations

Examples:

{ 1,4,6,7 }
{2,3,5}

Counterex.:

{ 4 }
{ 1,2,3,4 }
{ 1,4,6 }

r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Checking properties

Model checking

The model checking problem:

Does some run of the system satisfy a given property ψ?

Some important instances:
(1) Executability: Does some run contain a given transition?
(2) Repeated executability: Does some run contain a given

transition infinitely often?
(3) Livelock: Does some run contain an infinite tail of “silent”

transitions?
Fact:
The model-checking problem for next-free LTL-formulas can be
reduced to (2) and (3), for safety properties to (1).

Program for the rest of the tutorial

Unfolding-based algorithms for

I Executability (long)
I Search procedures
I Adequate strategies

I Repeated executability (1 slide)
I Model checking (2 slides)

More on checking safety properties:

I Designing unfolders
I Compressing the state space: canonical prefixes
I Deciding properties with canonical prefixes

Executability

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Executability in transition systems

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Search procedures

The executability problem for transition systems can be solved by
depth-first-search (DFS), breadth-first-search (BFS), or some other
search procedure.

Conducting a DFS or BFS amounts to exploring a prefix of the
computation tree.

The executability problem for products can also be solved by search
procedures that explore a prefix of the Unfolding.

We need a formalization of search procedure.

Search procedures

A search procedure consists of:

(1) a search scheme
I Termination condition: Determines which leaves of the current

prefix are terminals, i.e., nodes whose successors need not be
explored.
(Terminals are also called cut-offs.)

I Success condition: Determines which terminals are successful,
i.e., terminals proving that ψ holds.

(2) a search strategy
I determines which possible extension of the current prefix is

added to it.
(nondeterministic search strategies allowed!).

Search procedure for executability in transition
systems

Search procedure to decide if some run executes a goal transition g.

———————————————————————————-
Search scheme: An event is a terminal if
(1) it is labeled by g or,
(2) it leads to the same state as some other event

already explored

A terminal is successful if it is of type (1).

Search strategy: Any.
———————————————————————————-

Easy to show: All these search procedures (different strategies, same
scheme) are correct (terminate with the right outcome, but may
explore different sets of nodes).

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Example (again)

s3

s4

s1

s2

g

s1

s2 s3

s2 s3

s2 s4

g

Second example with g = {t5}

t4 t5

s4

s3s2

t3
t2t1

s1

Second example: Two prefixes

t4 t5

s4

s3s2

t3
t2t1

s1

s1

5 t2

s3

1t1

s2

t3 2

s3

4 t5

s4s2

3t4

(a)

s1

s3

2

t4 3 t55

s4

t2t1 1

s2

t3

s2s3

4

(b)

Search procedure for executability in transition
systems

Search procedure to decide if some run executes a goal transition g.

———————————————————————————-
Search scheme: An event is a terminal if
(1) it is labeled by g or,
(2) it leads to the same state as some other event

already explored

A terminal is successful if it is of type (1).

Search strategy: Any.
———————————————————————————-

Easy to show: All these search procedures (different strategies, same
scheme) are correct (terminate with the right outcome, but may
explore different sets of nodes).

Generalization to products: search scheme

We want something like this:

———————————————————————————-
Search scheme: An event is a terminal if
(1) it is labeled by g (and then it is successful) or,
(2) it leads to the same global state (marking) as some other event

already explored.

A terminal is successful if it is of type (1).
———————————————————————————-

But what does it mean “it leads to the same marking as some other
event already explored”?

An event does not always leads to only one marking!

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Solution: attach to an event the global state reached
by “executing its past”. (McMillan ’92,’95)

This is the global state reached by firing
the local configuration of the event.

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

Solution: attach to an event the global state reached
by “executing its past”. (McMillan ’92,’95)

This is the global state reached by firing
the local configuration of the event.

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s3, r1〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s3, r1〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s3, r1〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

s4 s4 r3

〈s4, r4〉

〈s3, r1〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r4〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r4〉

s1

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

r1

〈s2, r1〉 〈s1, r2〉

s2 s3 r2

r3

〈s4, r3〉

〈s3, r1〉

s4 s4 r3

〈s4, r3〉

s1

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consists of many transition sequences!

Solution: these sequences are a Mazurkiewicz trace.

———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order.
———————————————————————————-

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consists of many transition sequences!

Solution: these sequences are a Mazurkiewicz trace.

———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order.
———————————————————————————-

s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2Two search strategies for
w ,w ′ ∈ T ∗:

I w ≺ w ′ if |w | < |w ′|
I w ≺ w ′ if w is lexicographically

smaller than w ′

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consist of many transition sequences!

Solution: these sequences are a Mazurkiewicz trace.
———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order.
———————————————————————————-

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consist of many transition sequences!

Solution: these sequences build a Mazurkiewicz trace.
———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order.
———————————————————————————-

s1 r1

〈t3, u2〉

〈t1, ε〉 〈ε, u1〉

s2 s3

〈t2, ε〉

r2

s4 s4 r3r3

〈t4, u2〉

The past of event labelled 〈t3,u2〉 are the transition sequences:
I w1 = 〈t1, ε〉 〈ε,u1〉 〈t3,u2〉
I w2 = 〈ε,u1〉 〈t1, ε〉 〈t3,u2〉

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consist of many transition sequences!

Solution: these sequences build a Mazurkiewicz trace.
———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order.
———————————————————————————-

Generalization to products: search strategies
A search strategy determines which possible extension is added to
the current prefix.

Mathematical definition?

Transition systems: an event is characterized by its past, the unique
transition sequence leading to it.

———————————————————————————-
Search strategy: (partial) order ≺ on transition sequences

that refines the prefix order.
———————————————————————————-
Products: an event is also characterized by its past, but the past may
consist of many transition sequences!

Solution: these sequences build a Mazurkiewicz trace.
———————————————————————————-
Search strategy: (partial) order ≺ on Mazurkiewicz traces

that refines the prefix order on traces.
———————————————————————————-

Mazurkiewicz traces

I Two global transitions of a product are independent if no
component participates in both of them.

I Example: 〈t1, ε〉 and 〈ε,u1〉 are independent, 〈t1, ε〉 and 〈t3,u2〉
are not.

I Two sequences of global transitions are equivalent if the one can
be obtained from the other by repeatedly swapping adjacent
independent transitions.

I Example: 〈t1, ε〉 〈ε,u1〉 〈t3,u2〉 ∼ 〈ε,u1〉 〈t1, ε〉 〈t3,u2〉
I Mazurkiewicz trace: equivalence class of sequences.

I Example: [〈t1, ε〉 〈ε,u1〉 〈t3,u2〉] =
{
〈t1, ε〉 〈ε,u1〉 〈t3,u2〉 ,
〈ε,u1〉 〈t1, ε〉 〈t3,u2〉

}

Search procedure for executability of 〈t5, ε〉

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

11 12

10

4

s1 r1

t1 t2 u1

r2s3s2

〈t3, u2〉 〈t4, u2〉

s4r3s4

t5 u3

r1

u1

r2s3

t2t1

s2

s1

〈t3, u2〉 〈t4, u2〉

s4r3s4 r3

r3

132

7

8 5

9 6

Search strategy:
[w] ≺ [w ′]⇔ |w | < |w ′|
(well defined because
equivalent sequences
have the same length)

Are these search procedures correct?

Not for every strategy!!

t4

t6

t5

i2

h2

t2 t3

u4

u6

u5

i3

g3

u2 u3

v4

v6

v5

i4

h4

v2 v3

t1 u1 v1

G = {i}

T = {a = 〈a1, a2, a3, a4〉 ,b = 〈b1, b2, b3, b4〉 , c = 〈c1, c2, ε, ε〉 ,

s4

s5

i1

g1

s3s2

s6

s1

a1 b1

c1 e1 c2

a2 b2

e2

a3

d3

a4b3

d4f3

b4

f4

g = 〈g1, ε, g3, ε〉 ,h = 〈ε, h2, ε, h4〉 , i = 〈i1, i2, i3, i4〉}
d = 〈ε, ε, d3, d4〉 , e = 〈e1, e2, ε, ε〉 , f = 〈ε, ε, f3, f4〉 ,

s3 t3 u3 v3s2 t2 u2 v2

s4 t4

s1

s5 t5

u4 v4

u5 v5

s6 t6 u6 v6

a b

d f

g h

i

c e

t1 u1 v1 s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1

s3 t3 u3 v3s2 t2 u2 v2

s4 t4

s1

s5 t5

u4 v4

u5 v5

s6 t6 u6 v6

a b

d f

g h

i

c e

t1 u1 v1 s1

s2 t2 u2 v2 s3 t3 u3 v3

s5 t5 u5 v5

s4 t4 u4 v4 s4 t4 u4 v4

s6 u6 v6 s6 t6 u6

s5 t5 v5

a b

c e f

g h

i i

d

1 2

3 4 5 6

h7 8 g 9

12

10

u5

11

t6 v6

v1u1t1

Which are the correct strategies?

Sufficient condition: adequate strategies

Mazurkiewicz traces can be concatenated in the obvious way:
[w] [w ′] def

= [w w ′]

A strategy ≺ on Mazurkiewicz traces is adequate if it is

(1) well-founded
(no infinite descending chain [w0] � [w1] � [w2] � · · ·)

(2) preserved by extensions
([w ′] ≺ [w] implies [w ′] [w ′′] ≺ [w] [w ′′] for every [w ′′]).

(Lemma [Chatain and Khomenko]: (1)→ (2).)

Which are the correct strategies?

Sufficient condition: adequate strategies

Mazurkiewicz traces can be concatenated in the obvious way:
[w] [w ′] def

= [w w ′]

A strategy ≺ on Mazurkiewicz traces is adequate if it is

(1) well-founded
(no infinite descending chain [w0] � [w1] � [w2] � · · ·)

(2) preserved by extensions
([w ′] ≺ [w] implies [w ′] [w ′′] ≺ [w] [w ′′] for every [w ′′]).

(Lemma [Chatain and Khomenko]: (1)→ (2).)

Theorem: The search procedure is correct for every adequate
strategy.

Proof idea:

To prove: if g can be executed, then the search procedure explores
some trace [u g].

If g can be executed, then the Unfolding has some trace [w g].

If [w g] is explored, we are done. Otherwise, w contains a terminal
event. Let [w1] be its past. There exists another trace [w ′1] ≺ [w1]
such that:

[w g] = [w1 w2 g],
[w1] leads to the same global state as [w ′1].

Since ≺ is preserved by extensions, [w ′1 w2 g] ≺ [w1 w2 g].
Iterating the procedure, and by well-foundedness of ≺, we eventually
reach some trace [u g] that is explored.

Theorem: The search procedure is correct for every adequate
strategy.

Proof idea:

To prove: if g can be executed, then the search procedure explores
some trace [u g].

If g can be executed, then the Unfolding has some trace [w g].

If [w g] is explored, we are done. Otherwise, w contains a terminal
event. Let [w1] be its past. There exists another trace [w ′1] ≺ [w1]
such that:

[w g] = [w1 w2 g],
[w ′1] leads to the same global state as [w1]

Since ≺ is preserved by extensions, [w ′1 w2 g] ≺ [w1 w2 g].
Iterating the procedure, and by well-foundedness of ≺, we eventually
reach some trace [u g] that is explored.

Theorem: The search procedure is correct for every adequate
strategy.

Proof idea:

To prove: if g can be executed, then the search procedure explores
some trace [u g].

If g can be executed, then the Unfolding has some trace [w g].

If [w g] is explored, we are done. Otherwise, w contains a terminal
event. Let [w1] be its past. There exists another trace [w ′1] ≺ [w1]
such that:

I [w g] = [w1 w2 g],
I [w ′1] leads to the same global state as [w1].

Since ≺ is preserved by extensions, [w ′1 w2 g] ≺ [w1 w2 g].
Iterating the procedure, and by well-foundedness of ≺, we eventually
reach some trace [u g] that is explored.

Theorem: The search procedure is correct for every adequate
strategy.

Proof idea:

To prove: if g can be executed, then the search procedure explores
some trace [u g].

If g can be executed, then the Unfolding has some trace [w g].

If [w g] is explored, we are done. Otherwise, w contains a terminal
event. Let [w1] be its past. There exists another trace [w ′1] ≺ [w1]
such that:

I [w g] = [w1 w2 g],
I [w ′1] leads to the same global state as [w1].

Since ≺ is preserved by extensions, [w ′1 w2 g] ≺ [w1 w2 g].
Iterating the procedure, and by well-foundedness of ≺, we eventually
reach some trace [u g] that is explored.

Search procedure for executability in products

Search procedure to decide if some run executes a goal transition g.

———————————————————————-
Search strategy: Any adequate strategy ≺.

Search scheme: An event e is a terminal if
(1) it is labeled by g or,
(2) some event e′ ≺ e satisfies St(e′) = St(e).

A terminal is successful if it is of type (1).
————————————————————————

Some adequate strategies

The size strategy: [w] ≺ [w ′] iff |w | < |w ′|.

Fix an arbitrary total order on the global transitions of the product. Let
P(w) be a vector of naturals giving for each transition the number of
times it occurs in w .

The Parikh strategy:
[w] ≺ [w ′] iff |w | < |w ′| or
|w | = |w ′| and P(w) is lexicographically smaller than P(w ′)

(well defined because all sequences of a trace have the same Parikh
mapping).

Size of the prefix
s1

s4

s3s2

s10

s9s8

s7

s6s5

b

c d

a

e f

g h

i j

k l

s1

s10 s10 s10 s10 s10 s10 s10 s10

s8 s9 s8 s9 s8 s9 s8 s9

k

i

l

j

k

i

l

j

k

i

l

j

k

i

l

j

s7 s7 s7

g h g h

s5 s6 s5 s6

e f e f

s7

s4 s4

c d

s2 s3

a b

Total adequate strategies

An event is a terminal if some strictly smaller event with the same
marking has already been explored.

=⇒ If the order is total, no two events of the prefix have the same
marking.

=⇒ The prefix can contain at most as many events as the number of
reachable markings

Total adequate strategies

An event is a terminal if some strictly smaller event with the same
marking has already been explored.

=⇒ If the order is total, no two events of the prefix have the same
marking.

=⇒ The prefix can contain at most as many events as the number of
reachable markings

Are there total adequate strategies?

Are there total adequate strategies?

Fact 1: Every total adequate strategy on transition sequences can be
lifted to a total adequate strategy on Mazurkiewicz traces:

I Given w , consider its projections w1,w2, . . . ,wn on the
components of the product. Example:

I [w ′] ≺ [w] if there is an index i such that

w ′1 = w1,w ′2 = w2, . . . ,w ′i−1 = wi−1 and w ′i ≺ wi

Are there total adequate strategies?

Fact 2: The following strategy is adequate and total on transition
sequences: w1 ≺ w2 iff

I |w1| < |w2|, or
I |w1| = |w2| and w1 is lexicographically smaller than w2.

There are many total adequate strategies!

Esparza, Römer, and Vogler: Based on Foata normal forms.

Esparza, Römer: Distributed strategies.

Niebert, Qu: [w1] ≺ [w2] iff

I the Parikh vector of [w1] is lexicographically smaller than the
Parikh vector of [w2], or

I the Parikh vectors of [w1] and [w2] are equal, and
the lexicographic smallest sequence in [w1]
is lexicographically smaller
than the lexicographic smallest sequence in [w2].

Is depth-first search correct?

DFS similar (roughly speaking) to generating traces according to the
lexicographic ordering:

I [w1] ≺ [w2] if the lexicographic smallest sequence in [w1] is
lexicographically smaller than the lexicographic smallest
sequence in [w2].

This strategy is not adequate (not well-founded), but adequacy is only
a sufficient condition for correctness.

However: counterexample by E., Kanade, and Schwoon shows that
no direct generalization of DFS is correct.

Solution

Due to Bonet, Haslom, Hickmott, and Thiebaux

Change the search scheme!

———————————————————————-
Search strategy: Any strategy ≺, adequate or not!.

Search scheme: An event e is a terminal if
(1) it is labeled by g or,
(2) some event e′ ≺ e satisfies St(e′) = St(e) and e << e′.

where << is any adequate strategy.
A terminal is successful if it is of type (1).
————————————————————————

The catch: no guarantee on the size of of the prefix!

Repeated executability

A search procedure for repeated executability

This procedure has a “BFS” emptiness checker flavor to it, the
livelock problem has a similar algorithmic solution: Given an event e,
let #ge be the number of occurrences of g in the past of e.

———————————————————————————–
Search strategy: any adequate strategy.

Search scheme: An event e is a terminal if there is e′ ≺ e
such that St(e) = St(e′) and either
(1) e′ < e, or
(2) e 6< e, and #ge′ ≥ #ge.

A terminal is successful if it is of type (1) and some event
between e′ and e is labelled by g.
———————————————————————————–

Example: repeated executability of 〈t1, ε〉
s1

t1

s2

〈t3, u2〉

s3

t2 u1

r2

〈t4, u2〉

s4

t5

t1

s2 s3

t2

r3 s4s4

r3 s4

u3

r1

u1

r2

〈t3, u2〉

s1

r3

r3

r1

〈t4, u2〉

1 2 3

54

6 7

1098

11 12

Model checking LTL

Model checking linear temporal logic (LTL)

A quick summary on how to do LTL model checking with unfoldings
starting from a product A

I Restrict to LTL without the next-time operator (LTL-X): Otherwise
the need to synchronize with all transitions leads to no
concurrency and no savings from unfoldings

I Translate the negation of the LTL-X property ψ to Büchi
automaton A¬ψ

I Find the set of visible transitions V that changes the value of
atomic propositions, synchronize A¬ψ as an observer
component with all transitions in V, call the resulting product P

I Detect the “bad infinite behaviours” of A that are executions
violating ψ using P as input to the unfolding procedure

Bad infinite behaviours of A

There are two classes of bad infinite behaviours of A
(1) The bad behaviour executes infinitely many visible transitions in

V: This reduces to the repeated executability problem for a
subset of transitions R of P. (Basically all transition of A¬ψ that
go to an accepting Büchi state.)

(2) The bad behaviour executes only finitely many visible transitions
in V: This reduces to the livelock problem for a subset of
transitions L of P and a set of visible transitions V. (One needs to
analyze the structure of A¬ψ to identify the transitions after which
a livelock of invisible transitions would result in bad infinite
behaviour.)

This is basically the temporal testers approach of Antti Valmari but
used in combination with unfoldings. See the book for details.

Designing unfolders

Search procedure

procedure unfold(product A) {
N := net containing only the initial marking from A without events;
T := ∅; S := ∅; X := Ext(N ,T); /* Compute possible extensions */
while (X 6= ∅) {

choose a (minimal) event e ∈ X according to the search strategy;
extend N with e;
if e is a terminal according to the search scheme then {

T := T ∪ {e};
if e is successful according to the search scheme then {

S := S ∪ {e}; /* A successful terminal found, add early exit here!*/
};
};
X := Ext(N ,T); /* Compute possible extensions */
};
return 〈N ,T ,S〉; /* return 〈prefix, terminals, successful terminals〉 */
};

Computing possible extensions

I Core of any unfolder.
I Takes 90%+ of the running time.

I Complexity of adding one event? Algorithms ?

Computing possible extensions is NP-complete
A decision version of computing the possible extensions is
NP-complete in the size of the prefix. Consider the 3SAT formula
φ = ((x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)):

x1 x2 x3

tpx1 tnx1 tpx2 tnx2 tpx3 tnx3

m1

nx11 nx12px12

px11 px13 nx13

m2
m3

c3c2c1

t

s

ts11 ts13ts12 ts21 ts22 ts23 ts31 ts32 ts33

Computing possible extensions is NP-complete

A partial prefix of the system. Now t is in the possible extensions iff φ
is satisfiable.

bx1 bx2 bx3

enx1 epx2 enx2 epx3 enx3

bnx13

bm2
bm3

es11 es13es12 es21 es22 es23 es31 es32 es33

epx1

bpx11 bpx13

bpx12 bnx11bnx12

bm1

bc11 bc12 bc13 bc21 bc22 bc23 bc31 bc32 bc33

Computing possible extensions

Let k be the maximum in-degree of transitions and n be the number
of places in the prefix before calling the possible extensions
subroutine.

I Memory-intensive approach: Maintain the co-relation between
any two conditions. Takes O(n2) memory and takes O(nk/kk−2)
time. Also updating the co-relation takes O(n) time for each
added condition.

I Memory-light approach: Enumerate all possible extensions
without any co-relation using O(n) memory but O(nk+1/kk) time.

I More refined search approach: Preset trees (Khomenko)
I Solver approach: Employ an NP solver to compute the potential

extensions.

Compressing the state space:
canonical prefixes

Canonical prefixes

I Executability: If the goal transition cannot occur, the algorithm
always generates the same prefix of the unfolding, even if the
strategy is nondeterministic.

I This prefix “contains” all reachable global states
(for every reachable global state s there is a reachable marking
M of the prefix labeled by s).

I This unique prefix is called the canonical prefix
(theory by Khomenko, Koutny, and Vogler).

I The ratio
size of the canonical prefix
number of reachable states

measures the “degree of compression” achieved.
I Moreover: once computed, the canonical prefix can be reused to

solve reachability questions, deadlock freedom, and other safety
properties

A canonical finite prefix can be very succinct

The class of Petri nets containing the following representative for
n = 4 has a state space of size 2n but a prefix of linear size in the
parameter n:

p2

t1

p1

p4

p3

p6

p5

p8

p7

t2 t3 t4

The prefix is identical to the original net system!

A canonical finite prefix can be very large
Worst case: no concurrency but lots of non-determinism.

s1

s4

s3s2

s10

s9s8

s7

s6s5

b

c d

a

e f

g h

i j

k l

s1

s10 s10 s10 s10 s10 s10 s10 s10

s8 s9 s8 s9 s8 s9 s8 s9

k

i

l

j

k

i

l

j

k

i

l

j

k

i

l

j

s7 s7 s7

g h g h

s5 s6 s5 s6

e f e f

s7

s4 s4

c d

s2 s3

a b

Canonical finite prefix sizes

Prefixes are often smaller than the state space.
For total search strategies prefixes have never more events than
reachable states.

Problem(size) |S| |T | |B| |E | #c States
DPD(5) 45 45 1582 790 211 3488
DPD(6) 54 54 3786 1892 499 19860
DPD(7) 63 63 8630 4314 1129 109964
DPH(5) 48 67 2712 1351 547 3112
DPH(6) 57 92 14590 7289 3407 16896
DPH(7) 66 121 74558 37272 19207 79926
RING(7) 91 77 813 403 79 16999
RING(9) 117 99 1599 795 137 211527
ELEVATOR(2) 146 299 1562 827 331 1061
ELEVATOR(3) 327 783 7398 3895 1629 7120
ELEVATOR(4) 736 1939 32354 16935 7337 43439
FURNACE(1) 27 37 535 326 189 343
FURNACE(2) 40 65 4573 2767 1750 3777
FURNACE(3) 53 99 30820 18563 12207 30860

But, shouldn’t you compare

with the size of a BDD ?

Heterogeneous philosophers: BDD size

I 100 random tables with right-handed, left-handed, and
ambidextrous philosophers

I BDD for the set of reachable states

Nr. of BDD size
phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 178 94 355 52 0.30
6 583 248 1716 305 0.52
8 1553 390 8678 1437 0.92

10 3140 510 27516 4637 1.48
12 4855 632 47039 8538 1.76
14 33742 797 429903 85798 2.54

Heterogeneous philosophers: Prefix size

I 100 random tables with right-handed, left-handed, and
ambidextrous philosophers

I Nodes of the canonical prefix

Nr. of Prefix size
phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 46 40 60 5.13 0.10
6 70 60 85 5.99 0.09
8 95 80 110 6.92 0.07

10 117 100 135 7.78 0.07
12 141 120 160 7.40 0.05
14 161 140 185 9.25 0.06

Checking deadlock-freedom with BDDs

I 100 random tables with right-handed, left-handed, and
ambidextrous philosophers

I SMV on a very old machine ...

Nr of Time in seconds
phil. Average Min. Max. St.Dev. Aver./St.Dev.

4 0.08 0.05 0.13 0.02 0.29
6 0.36 0.20 1.18 0.16 0.46
8 4.14 1.25 14.60 2.45 0.59

10 56.60 15.80 388.00 46.90 0.83
12 1595.00 228.00 10616.00 1615.00 1.01

Checking deadlock-freedom with unfoldings

I 100 random tables with right-handed, left-handed, and
ambidextrous-philosophers

I PEP on a very old machine ...

Nr. of Time in seconds
phil. Average Min Max St. Dev Aver./St. Dev

8 0.01 0.04 0.03 0.007 0.24
10 0.01 0.06 0.03 0.009 0.27
12 0.02 0.07 0.04 0.012 0.28
14 0.02 0.05 0.04 0.007 0.20
16 0.02 0.05 0.04 0.007 0.17
18 0.03 0.05 0.04 0.007 0.17

External benchmarks (“real world” benchmarks)

I Analysis of asynchronous circuits (Khomenko, McMillan,
Semenov, Yakovlev, and others).

I Automated testing of multithreaded programs (Kähkönen,
Saarikivi, Heljanko).

I Planning (Hickmott, Rintanen, Thiébaux, White).
I Analysis of biological networks (Karlebach, Shamir).
I Fault detection in telecommunication networks (Jard and others).
I Analysis of manufacturing supply chain networks (Dong, Chen).

Deciding reachability with
canonical prefixes

Reachability

I Reachability of local states

Product/1-safe PN Canonical prefix Interleaving
PSPACE-complete Linear Linear

I Reachability of global states

Product/1-safe PN Canonical prefix Interleaving
PSPACE-complete NP-complete Linear

A canonical prefix

s1 r1

a c e

r2s2

b d f

r3s3

c

s2

s3

λ

1

γ δ

3 2 4

5 6

θ

8 9 7

ξνµ

βs1 r1

c

bea

s1 r1

r2 ι κs2 r3

s3s1 r2

α

r2s2

ζ ε η

d

a fb

Reducing reachability to SAT

c

s2

s3

λ

1

γ δ

3 2 4

5 6

θ

8 9 7

ξνµ

βs1 r1

c

bea

s1 r1

r2 ι κs2 r3

s3s1 r2

α

r2s2

ζ ε η

d

a fb

p φp

α α↔ ¬e1
β β ↔ ¬e1
γ ((e3 ∨ e4)→ e1) ∧ ¬(e3 ∧ e4)∧

(γ ↔ (e1 ∧ ¬e3 ∧ ¬e4))
δ ((e2 ∨ e6)→ e1) ∧ ¬(e2 ∧ e6)∧

(δ ↔ (e1 ∧ ¬e2 ∧ ¬e6))
ε ε↔ e2
ζ ζ ↔ e3
η (e6→ e4) ∧ (η ↔ (e4 ∧ ¬e6))
κ ((e8 ∨ e9)→ e6) ∧ ¬(e8 ∧ e9)∧

(κ↔ (e6 ∧ ¬e8 ∧ ¬e9))
λ λ↔ e6
µ µ↔ e8
ν ν ↔ e9

SAT encoding

I A conjunction of all the formulas for the conditions gives a
formula encoding all reachable configurations of the prefix

I It is easy to project this on the markings of the original net by
introducing variables for the original places of the net and adding
to the formula a conjunction for each place of the original net:

s1 ↔ (α ∨ ζ ∨ µ)
...

...
r2 ↔ δ

I A global state marking both s1 and r2 can be reached if the
formula obtained by conjunction with (s1 ∧ r2) is satisfiable

I Deadlock detection is just another reachability property

Deadlock checking running time
Unfolding much slower than deadlock detection (old results but the
trend is still the same). Fastest tools currently are PUnf (unfolding)
and CLP (reachability) by Victor Khomenko

Problem(size) DL UnfERVunfold DCmcsmodels -n
DPD(5) N 0.1 0.1
DPD(6) N 0.5 0.3
DPD(7) N 2.2 0.8
DPH(5) N 0.2 0.1
DPH(6) N 4.1 1.3
DPH(7) N 101.7 11.3
ELEVATOR(2) Y 0.1 0.0
ELEVATOR(3) Y 1.3 0.2
ELEVATOR(4) Y 27.4 1.0
FURNACE(1) N 0.0 0.0
FURNACE(2) N 0.4 0.1
FURNACE(3) N 14.3 1.1
RING(7) N 0.1 0.0
RING(9) N 0.2 0.1
RW(9) N 0.5 0.2
RW(12) N 25.3 2.2

Minimizing canonical prefixes

We can declare an event a terminal if there is some smaller
configuration (not necessarily local!) with the same marking.
More difficult to check, but more terminals!

Original Prefix Minimal Prefix Time (s)
Problem(size) |B| |E| #c |B| |E| #c Unf Minsmo
BDS(1) 12310 6330 3701 3167 1660 832 2.5 11.6
DPD(6) 3786 1892 499 1282 640 258 0.5 3.6
DPD(7) 8630 4314 1129 2488 1243 502 2.2 14.6
DPH(6) 14590 7289 3407 3338 1663 636 4.1 17.0
DPH(7) 74558 37272 19207 7840 3913 1580 101.4 117.9
FURNACE(2) 4573 2767 1750 1966 1168 688 0.4 4.6
FURNACE(3) 30820 18563 12207 10177 5995 3710 14.3 162.3
HART(75) 529 302 1 529 302 1 0.1 2.3
HART(100) 704 402 1 704 402 1 0.2 4.0
DAC(12) 260 146 0 128 80 11 0.0 0.1
DAC(15) 371 206 0 161 101 14 0.0 0.1
SENT(75) 533 266 40 440 207 23 0.1 0.8
SENT(100) 608 291 40 515 232 23 0.1 1.1

More . . .

The unfolding technique was introduced by McMillan in [29, 28, 30],
and since then it has been further analyzed and improved
[32, 15, 16, 21], parallelized [20, 34], distributed [3] and extended to
LTL model checking [11, 13, 14]. Initially developed for ‘plain’ Petri
nets or communicating automata, it has been extended to
symmetrical Petri nets, [12], unbounded Petri nets [1], nets with read
arcs [36], time Petri nets [17, 9, 10], automata communicating
through queues [27], networks of timed automata [6, 7], process
algebra [26], and graph-grammars [2]. It has been implemented in
several tools [34, 35, 20, 25, 33, 19] and applied, among other
problems, to conformance checking [31], analysis and synthesis of
asynchronous circuits [22, 24, 23], monitoring and diagnose of
discrete event systems [5, 4, 8], and analysis of asynchronous
communication protocols [27].

Parosh Aziz Abdulla, S. Purushothaman Iyer, and Aletta Nylén.
Unfoldings of unbounded Petri nets.
In E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume
1855 of Lecture Notes in Computer Science, pages 495–507.
Springer, 2000.

Paolo Baldan, Andrea Corradini, and Barbara König.
Verifying finite-state graph grammars: an unfolding-based
approach.
In Proc. of CONCUR ’04, LNCS 3170, pages 83–98. Springer,
2004.

Paolo Baldan, Stefan Haar, and Barbara König.
Distributed unfolding of Petri nets.
In Luca Aceto and Anna Ingólfsdóttir, editors, FoSSaCS, volume
3921 of Lecture Notes in Computer Science, pages 126–141.
Springer, 2006.

Albert Benveniste, Eric Fabre, Calude Jard, and Stefan Haar.
Diagnosis of asynchronous discrete event systems, a net
unfolding approach.
IEEE Transactions on Automatic Control, 48(5):714–727, May
2003.

Albert Benveniste, Stefan Haar, Eric Fabre, and Claude Jard.
Distributed monitoring of concurrent and asynchronous systems.
In Roberto M. Amadio and Denis Lugiez, editors, CONCUR,
volume 2761 of Lecture Notes in Computer Science, pages 1–26.
Springer, 2003.

Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier.
Timed unfoldings for networks of timed automata.
In Graf and Zhang [18], pages 292–306.

Franck Cassez, Thomas Chatain, and Claude Jard.
Symbolic unfoldings for networks of timed automata.
In Graf and Zhang [18], pages 307–321.

Thomas Chatain and Claude Jard.
Symbolic diagnosis of partially observable concurrent systems.
In David de Frutos-Escrig and Manuel Núñez, editors, FORTE,
volume 3235 of Lecture Notes in Computer Science, pages
326–342. Springer, 2004.

Thomas Chatain and Claude Jard.
Time supervision of concurrent systems using symbolic
unfoldings of time Petri nets.
In Paul Pettersson and Wang Yi, editors, FORMATS, volume
3829 of Lecture Notes in Computer Science, pages 196–210.
Springer, 2005.

Thomas Chatain and Claude Jard.
Complete finite prefixes of symbolic unfoldings of safe time Petri
nets.
In Susanna Donatelli and P. S. Thiagarajan, editors, ICATPN,
volume 4024 of Lecture Notes in Computer Science, pages
125–145. Springer, 2006.

Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud.
Designing an LTL model-checker based on unfolding graphs.
In Mogens Nielsen and Dan Simpson, editors, Proc. of ICATPN
2000, LNCS 1825. Springer, 2000.

Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud.
Unfolding of products of symmetrical Petri nets.
In J.M. Colom and M. Koutny, editors, Proc. of ICATPN’01, LNCS
2075. Springer, 2001.

Javier Esparza and Keijo Heljanko.
A new unfolding approach to LTL model checking.
In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
Proceedings of 27th International Colloquium on Automata,
Languages and Programming (ICALP’2000), volume 1853 of
Lecture Notes in Computer Science, pages 475–486, Geneva,
Switzerland, July 2000. Springer.

Javier Esparza and Keijo Heljanko.
Implementing LTL model checking with net unfoldings.
In Matthew B. Dwyer, editor, Proceedings of the 8th International
SPIN Workshop on Model Checking of Software (SPIN’2001),
volume 2057 of Lecture Notes in Computer Science, pages
37–56, Toronto, Canada, May 2001. Springer.

Javier Esparza and Stefan Römer.
An unfolding algorithm for synchronous products of transition
systems.
In Proceedings of the 10th International Conference on
Concurrency Theory (CONCUR’99), pages 2–20.
Springer-Verlag, 1999.
LNCS 1664.

Javier Esparza, Stefan Römer, and Walter Vogler.
An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design, 20:285–310, 2002.

Hans Fleischhack and Christian Stehno.
Computing a finite prefix of a time Petri net.
In Javier Esparza and Charles Lakos, editors, ICATPN, volume
2360 of Lecture Notes in Computer Science, pages 163–181.
Springer, 2002.

Susanne Graf and Wenhui Zhang, editors.
Automated Technology for Verification and Analysis, 4th
International Symposium, ATVA 2006, Beijing, China, October
23-26, 2006., volume 4218 of Lecture Notes in Computer
Science. Springer, 2006.

Bernd Grahlmann.
The PEP tool.
In Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 440–443. Springer, 1997.

Keijo Heljanko, Victor Khomenko, and Maciej Koutny.
Parallelisation of the Petri net unfolding algorithm.
In Joost-Pieter Katoen and Perdita Stevens, editors, Proceedings
of the 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’2002), volume
2280 of Lecture Notes in Computer Science, pages 371–385,
Grenoble, France, April 2002. Springer.

Victor Khomenko, Maciej Koutny, and Walter Vogler.
Canonical prefixes of Petri net unfoldings.
Acta Informatica, Volume 40, Number 2, pages 95–118, October
2003.

Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev.
Detecting state encoding conflicts in stg unfoldings using SAT.
Fundam. Inform., 62(2):221–241, 2004.

Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev.
Logic synthesis for asynchronous circuits based on stg unfoldings
and incremental SAT.
Fundam. Inform., 70(1-2):49–73, 2006.

Victor Khomenko, Agnes Madalinski, and Alexandre Yakovlev.
Resolution of encoding conflicts by signal insertion and
concurrency reduction based on stg unfoldings.
In ACSD, pages 57–68. IEEE Computer Society, 2006.

Barbara König and Vitali Kozioura.
Augur - a tool for the analysis of graph transformation systems.
Bulletin of the EATCS, 87:126–137, 2005.

Rom Langerak and Ed Brinksma.
A complete finite prefix for process algebra.
In Nicolas Halbwachs and Doron Peled, editors, CAV, volume
1633 of Lecture Notes in Computer Science, pages 184–195.
Springer, 1999.

Yu Lei and S. Purushothaman Iyer.
An approach to unfolding asynchronous communication
protocols.
In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors,
FM, volume 3582 of Lecture Notes in Computer Science, pages
334–349. Springer, 2005.

Kenneth L. McMillan.
Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

Kenneth L. McMillan.
Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits.
In G. von Bochmann and D. Probst, editors, Proc. of CAV’92,
LNCS 663. Springer, 1993.

Kenneth L. McMillan.
A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

Kenneth L. McMillan.
Trace theoretic verification of asynchronous circuits using
unfoldings.
In Proc. of CAV’95, LNCS 939. Springer, 1995.

Stephan Melzer and Stefan Römer.
Deadlock checking using net unfoldings.
In Orna Grumberg, editor, Proc. of CAV’97, LNCS 1254.
Springer, 1997.

Stephan Melzer, Stefan Römer, and Javier Esparza.
Verification using PEP.
In Martin Wirsing and Maurice Nivat, editors, AMAST, volume
1101 of Lecture Notes in Computer Science, pages 591–594.
Springer, 1996.

Claus Schröter and Victor Khomenko.
Parallel LTL-X model checking of high-level Petri nets based on
unfoldings.
In Rajeev Alur and Doron Peled, editors, CAV, volume 3114 of
Lecture Notes in Computer Science, pages 109–121. Springer,
2004.

Claus Schröter, Stefan Schwoon, and Javier Esparza.
The Model-Checking Kit.
In Wil van der Aalst and Eike Best, editors, Applications and
Theory of Petri Nets 2003, volume 2679 of Lecture Notes in
Computer Science, pages 463–472. Springer, June 2003.

W. Vogler, A.L. Semenov, and A. Yakovlev.
Unfolding and finite prefix for nets with read arcs.
In D. Sangiorgi and R. de Simone, editors, Proc. of CONCUR ’98,
LNCS 1466. Springer, 1998.

Tutorial summary

I We have introduced unfoldings, a symbolic method to compactly
represent the state space of the system using unfoldings

I Applicable to any model with a notion of independent events
I Unfolding theory built on top of the theory of Mazurkiewicz traces
I We show the algorithmic details of unfolding procedures, and

reachability checking based on SAT solvers

Parosh Aziz Abdulla, S. Purushothaman Iyer, and Aletta Nylén.
Unfoldings of unbounded Petri nets.
In E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume
1855 of Lecture Notes in Computer Science, pages 495–507.
Springer, 2000.

Paolo Baldan, Andrea Corradini, and Barbara König.
Verifying finite-state graph grammars: an unfolding-based
approach.
In Proc. of CONCUR ’04, LNCS 3170, pages 83–98. Springer,
2004.

Paolo Baldan, Stefan Haar, and Barbara König.
Distributed unfolding of Petri nets.
In Luca Aceto and Anna Ingólfsdóttir, editors, FoSSaCS, volume
3921 of Lecture Notes in Computer Science, pages 126–141.
Springer, 2006.

Albert Benveniste, Eric Fabre, Calude Jard, and Stefan Haar.
Diagnosis of asynchronous discrete event systems, a net
unfolding approach.
IEEE Transactions on Automatic Control, 48(5):714–727, May
2003.

Albert Benveniste, Stefan Haar, Eric Fabre, and Claude Jard.
Distributed monitoring of concurrent and asynchronous systems.
In Roberto M. Amadio and Denis Lugiez, editors, CONCUR,
volume 2761 of Lecture Notes in Computer Science, pages 1–26.
Springer, 2003.

Patricia Bouyer, Serge Haddad, and Pierre-Alain Reynier.
Timed unfoldings for networks of timed automata.
In Graf and Zhang [18], pages 292–306.

Franck Cassez, Thomas Chatain, and Claude Jard.
Symbolic unfoldings for networks of timed automata.
In Graf and Zhang [18], pages 307–321.

Thomas Chatain and Claude Jard.
Symbolic diagnosis of partially observable concurrent systems.
In David de Frutos-Escrig and Manuel Núñez, editors, FORTE,
volume 3235 of Lecture Notes in Computer Science, pages
326–342. Springer, 2004.

Thomas Chatain and Claude Jard.
Time supervision of concurrent systems using symbolic
unfoldings of time Petri nets.
In Paul Pettersson and Wang Yi, editors, FORMATS, volume
3829 of Lecture Notes in Computer Science, pages 196–210.
Springer, 2005.

Thomas Chatain and Claude Jard.
Complete finite prefixes of symbolic unfoldings of safe time Petri
nets.
In Susanna Donatelli and P. S. Thiagarajan, editors, ICATPN,
volume 4024 of Lecture Notes in Computer Science, pages
125–145. Springer, 2006.

Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud.
Designing an LTL model-checker based on unfolding graphs.
In Mogens Nielsen and Dan Simpson, editors, Proc. of ICATPN
2000, LNCS 1825. Springer, 2000.

Jean-Michel Couvreur, Sébastien Grivet, and Denis Poitrenaud.
Unfolding of products of symmetrical Petri nets.
In J.M. Colom and M. Koutny, editors, Proc. of ICATPN’01, LNCS
2075. Springer, 2001.

Javier Esparza and Keijo Heljanko.
A new unfolding approach to LTL model checking.
In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,
Proceedings of 27th International Colloquium on Automata,
Languages and Programming (ICALP’2000), volume 1853 of
Lecture Notes in Computer Science, pages 475–486, Geneva,
Switzerland, July 2000. Springer.

Javier Esparza and Keijo Heljanko.
Implementing LTL model checking with net unfoldings.
In Matthew B. Dwyer, editor, Proceedings of the 8th International
SPIN Workshop on Model Checking of Software (SPIN’2001),
volume 2057 of Lecture Notes in Computer Science, pages
37–56, Toronto, Canada, May 2001. Springer.

Javier Esparza and Stefan Römer.
An unfolding algorithm for synchronous products of transition
systems.
In Proceedings of the 10th International Conference on
Concurrency Theory (CONCUR’99), pages 2–20.
Springer-Verlag, 1999.
LNCS 1664.

Javier Esparza, Stefan Römer, and Walter Vogler.
An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design, 20:285–310, 2002.

Hans Fleischhack and Christian Stehno.
Computing a finite prefix of a time Petri net.
In Javier Esparza and Charles Lakos, editors, ICATPN, volume
2360 of Lecture Notes in Computer Science, pages 163–181.
Springer, 2002.

Susanne Graf and Wenhui Zhang, editors.
Automated Technology for Verification and Analysis, 4th
International Symposium, ATVA 2006, Beijing, China, October
23-26, 2006., volume 4218 of Lecture Notes in Computer
Science. Springer, 2006.

Bernd Grahlmann.
The PEP tool.
In Orna Grumberg, editor, CAV, volume 1254 of Lecture Notes in
Computer Science, pages 440–443. Springer, 1997.

Keijo Heljanko, Victor Khomenko, and Maciej Koutny.
Parallelisation of the Petri net unfolding algorithm.
In Joost-Pieter Katoen and Perdita Stevens, editors, Proceedings
of the 8th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’2002), volume
2280 of Lecture Notes in Computer Science, pages 371–385,
Grenoble, France, April 2002. Springer.

Victor Khomenko, Maciej Koutny, and Walter Vogler.
Canonical prefixes of Petri net unfoldings.
Acta Informatica, Volume 40, Number 2, pages 95–118, October
2003.

Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev.
Detecting state encoding conflicts in stg unfoldings using SAT.
Fundam. Inform., 62(2):221–241, 2004.

Victor Khomenko, Maciej Koutny, and Alexandre Yakovlev.
Logic synthesis for asynchronous circuits based on stg unfoldings
and incremental SAT.
Fundam. Inform., 70(1-2):49–73, 2006.

Victor Khomenko, Agnes Madalinski, and Alexandre Yakovlev.
Resolution of encoding conflicts by signal insertion and
concurrency reduction based on stg unfoldings.
In ACSD, pages 57–68. IEEE Computer Society, 2006.

Barbara König and Vitali Kozioura.
Augur - a tool for the analysis of graph transformation systems.
Bulletin of the EATCS, 87:126–137, 2005.

Rom Langerak and Ed Brinksma.
A complete finite prefix for process algebra.
In Nicolas Halbwachs and Doron Peled, editors, CAV, volume
1633 of Lecture Notes in Computer Science, pages 184–195.
Springer, 1999.

Yu Lei and S. Purushothaman Iyer.
An approach to unfolding asynchronous communication
protocols.
In John Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors,
FM, volume 3582 of Lecture Notes in Computer Science, pages
334–349. Springer, 2005.

Kenneth L. McMillan.
Symbolic Model Checking.
Kluwer Academic Publishers, 1993.

Kenneth L. McMillan.
Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits.
In G. von Bochmann and D. Probst, editors, Proc. of CAV’92,
LNCS 663. Springer, 1993.

Kenneth L. McMillan.
A technique of state space search based on unfolding.
Formal Methods in System Design, 6(1):45–65, 1995.

Kenneth L. McMillan.
Trace theoretic verification of asynchronous circuits using
unfoldings.
In Proc. of CAV’95, LNCS 939. Springer, 1995.

Stephan Melzer and Stefan Römer.
Deadlock checking using net unfoldings.
In Orna Grumberg, editor, Proc. of CAV’97, LNCS 1254.
Springer, 1997.

Stephan Melzer, Stefan Römer, and Javier Esparza.
Verification using PEP.
In Martin Wirsing and Maurice Nivat, editors, AMAST, volume
1101 of Lecture Notes in Computer Science, pages 591–594.
Springer, 1996.

Claus Schröter and Victor Khomenko.
Parallel LTL-X model checking of high-level Petri nets based on
unfoldings.
In Rajeev Alur and Doron Peled, editors, CAV, volume 3114 of
Lecture Notes in Computer Science, pages 109–121. Springer,
2004.

Claus Schröter, Stefan Schwoon, and Javier Esparza.
The Model-Checking Kit.
In Wil van der Aalst and Eike Best, editors, Applications and
Theory of Petri Nets 2003, volume 2679 of Lecture Notes in
Computer Science, pages 463–472. Springer, June 2003.

W. Vogler, A.L. Semenov, and A. Yakovlev.
Unfolding and finite prefix for nets with read arcs.
In D. Sangiorgi and R. de Simone, editors, Proc. of CONCUR ’98,
LNCS 1466. Springer, 1998.

