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• A system property

„Every sent message is received eventually.”∧
m

G(se(m) →↓x.Frec(m) ∧ x@1
∼ @2 ∧ x@2

∼ @1)
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Definition: Data Words

• Let

◮ Σ be a finite alphabet

◮ D be an infinite set of data values

• w ∈ (Σ × Dm)∗ is an m-dimensional data word over Σ
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• D = {1, 2, 3, . . .}

Definition: Data Words

• Let

◮ Σ be a finite alphabet

◮ D be an infinite set of data values

• w ∈ (Σ × Dm)∗ is an m-dimensional data word over Σ
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Logics on Data Words – Data Logics

• Even very weak logics on data words have an undecidable

satisfiability problem.

◮ First order logic with only three variables is not decidable

[Bojańczyk et al. 06]

◮ LTL is in general not decidable [Demri et al. 06]

➞ Focus on restricted logics where the only predicate on data values

is the equality relation
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Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position
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Theorem [Demri et al. 06]

• Satisfiability is decidable on

◮ 1-dimensional data words if

◮ only one variable and

◮ only future operators are used.

• Complexity: not primitive recursive
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◮ 1-dimensional data words if

◮ only one variable and
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◮ more than one variable or

◮ past operators are added.
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Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .
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Theorem ([K. et al. 06])

• Satisfiability is decidable on

◮ multi-dimensional data words with

◮ future and past operators.

• Precise complexity not known but

presumably very bad.

• Satisfiability is undecidable if

◮ navigation along tuples is allowed
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Investigations on Data Logics

• In many papers it is mentioned that system verification is one of the

main motivations for the investigation of data logics:

◮ Data values can be used to represent process IDs and data

words to represent system runs.

◮ Data logics can be used to specify system properties.

• Nevertheless, the most investigated question is rather satisfiability

than model checking.
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Our Main Motivation

• We want to consider the model checking problem with data logics

on models which

◮ describe the behavior of concurrent systems with unboundedly

many processes, and

◮ produce system runs which can be represented by data words if

process IDs are identified by data values.

➞ Model Checking on models producing restricted data words can

deliver good decidability and complexity results.
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Dynamic Communicating Automata (DCA)

• Introduced by [Bollig and Hélouët 10]

• Extension of communicating finite state machines [Brand and

Zafiropulo 83]

• Allows the creation of fresh processes

• Communication between processes through communication

channels

• Maintenance of communication by storing process ID in registers
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A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1
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A 2-variable DCA
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The Model Checking Problem on DCA

The Model Checking Problem on DCA

Given: A DCA A and a formula ϕ of a data logic

Question: Does ϕ hold on all accepting runs of A?
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First Insights – Undecidability Results

Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels

is undecidable.
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First Insights – Undecidability Results

Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels

is undecidable.

Proof idea

• By reduction from the nonemptiness problem for 2-counter

automata.

◮ A chain of processes can represent a counter value.
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H

(a1,F1, i1)
·
·
·

(an,Fn, in)

(b1,G1, c1,Hn, i
′
1
)

·
·
·

(bm,Gm, cm,Hm, i′
m
)
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)

∅

(a1, ∅, i1)
·
·
·

(an, ∅, in)

(b1, ∅, c1, ∅, i
′
1
)

·
·
·

(bm, ∅, cm, ∅, i′
m
)
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First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)

∅

(a1, ∅, i1)
·
·
·

(an, ∅, in)

(b1, ∅, c1, ∅, i
′
1
)

·
·
·

(bm, ∅, cm, ∅, i′
m
)

3. Reduction to the nonemptiness problem for multi-counter

automata without zero-tests.
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Further Directions

• Model Checking of DCA where communication paths between

processes are always bounded remains decidable.

◮ How can DCA be restricted such that this property holds on all

runs?

• Consider model checking on models which describe the global

behavior of a system: register automata, register pushdown

automata, MSC-based models.
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