
Model Checking Concurrent Systems with

Unboundedly Many Processes Using Data

Logics

Ahmet Kara

MOVEP 2012, Marseille



Interaction of Unboundedly Many Processes

1 2 3
mn o

4

p

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 1



Interaction of Unboundedly Many Processes

1

• A system run

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2

• A system run

spawn

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3

• A system run

spawn

1
2

spawn

2
3

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
m

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
mn

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
n

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

rec(m)

2
1

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
n o

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

rec(m)

2
1

se(o)

2
3

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
n o

4

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

rec(m)

2
1

se(o)

2
3

spawn

3
4

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
n o

4

p

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

rec(m)

2
1

se(o)

2
3

spawn

3
4

se(p)

3
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Interaction of Unboundedly Many Processes

1 2 3
n o

4

p

• A system run

spawn

1
2

spawn

2
3

se(m)

1
2

se(n)

1
2

rec(m)

2
1

se(o)

2
3

spawn

3
4

se(p)

3
2

• A system property

„Every sent message is received eventually.”∧
m

G(se(m) →↓x.Frec(m) ∧ x@1
∼ @2 ∧ x@2

∼ @1)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 2



Words and Data Words

A Word over Σ = {a, b, c}

c c a c a b c b

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 3



Words and Data Words

A Word over Σ = {a, b, c}

c c a c a b c b

A Data Word over Σ = {a, b, c}

c

1
7

c

4
4

a

3
2

c

2
5

a

2
9

b

3
1

c

7
3

b

2
2

Definition: Data Words

• Let

◮ Σ be a finite alphabet

◮ D be an infinite set of data values

• w ∈ (Σ × Dm)∗ is an m-dimensional data word over Σ

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 3



Words and Data Words

A Word over Σ = {a, b, c}

c c a c a b c b

A Data Word over Σ = {a, b, c}

c

1
7

c

4
4

a

3
2

c

2
5

a

2
9

b

3
1

c

7
3

b

2
2

• D = {1, 2, 3, . . .}

Definition: Data Words

• Let

◮ Σ be a finite alphabet

◮ D be an infinite set of data values

• w ∈ (Σ × Dm)∗ is an m-dimensional data word over Σ

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 3



Logics on Data Words – Data Logics

• Even very weak logics on data words have an undecidable

satisfiability problem.

◮ First order logic with only three variables is not decidable

[Bojańczyk et al. 06]

◮ LTL is in general not decidable [Demri et al. 06]

➞ Focus on restricted logics where the only predicate on data values

is the equality relation

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 4



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

x

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

x

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

x

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“There is a b-position such that an a-position

with the same data value follows somewhere in

the future.”

a

1

c

2

b

3

a

1

b

4

a

3

b

7

c

2

x

F(b ∧ ↓x.F(a ∧ x@1
∼ @1)))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 5



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

G(b → ↓x.X(x@1
6∼ @2))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

G(b → ↓x.X(x@1
6∼ @2))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

x x x

G(b → ↓x.X(x@1
6∼ @2))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

x x x

G(b → ↓x.X(x@1
6∼ @2))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

x x x

G(b → ↓x.X(x@1
6∼ @2))

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

x x x

G(b → ↓x.X(x@1
6∼ @2))

Theorem [Demri et al. 06]

• Satisfiability is decidable on

◮ 1-dimensional data words if

◮ only one variable and

◮ only future operators are used.

• Complexity: not primitive recursive

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Freeze LTL (LTL
⇓

)

• Freeze LTL (LTL⇓
) [Demri et al. 06]:

◮ contains the usual temporal operators like

X,F,U, . . .

◮ allows to put a variable x on a position

◮ allows to compare the data values of the

x-position with the data values of a

current position

Example

“The first data value of every b-position is

different from the second data value of its next

position.”

a

1
3

c

2
6

b

3
4

a

1
4

b

4
7

a

3
9

b

7
2

c

2
6

x x x

G(b → ↓x.X(x@1
6∼ @2))

Theorem [Demri et al. 06]

• Satisfiability is decidable on

◮ 1-dimensional data words if

◮ only one variable and

◮ only future operators are used.

• Complexity: not primitive recursive

• Satisfiability is undecidable if

◮ more than one variable or

◮ past operators are added.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 6



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Example

“There is some position such that on the

subword induced by its first data value it holds

a until b.”

d

3
4

a

3
6

c

5
7

a

4
3

a

6
3

b

4
2

b

3
4

c

5
2

FC@1
(aU=b)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Example

“There is some position such that on the

subword induced by its first data value it holds

a until b.”

d

3
4

a

3
6

c

5
7

a

4
3

a

6
3

b

4
2

b

3
4

c

5
2

FC@1
(aU=b)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Example

“There is some position such that on the

subword induced by its first data value it holds

a until b.”

d

3
4

a

3
6

c

5
7

a

4
3

a

6
3

b

4
2

b

3
4

c

5
2

FC@1
(aU=b)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Example

“There is some position such that on the

subword induced by its first data value it holds

a until b.”

d

3
4

a

3
6

c

5
7

a

4
3

a

6
3

b

4
2

b

3
4

c

5
2

FC@1
(aU=b)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Logics on Data Words – Data LTL

• Data LTL [K. et al. 06]:

◮ allows navigation on consecutive position

via X,F,U, . . .

◮ allows navigation on positions carrying

the same data value via

X=,F=,U=, . . .

Example

“There is some position such that on the

subword induced by its first data value it holds

a until b.”

d

3
4

a

3
6

c

5
7

a

4
3

a

6
3

b

4
2

b

3
4

c

5
2

FC@1
(aU=b)

Theorem ([K. et al. 06])

• Satisfiability is decidable on

◮ multi-dimensional data words with

◮ future and past operators.

• Precise complexity not known but

presumably very bad.

• Satisfiability is undecidable if

◮ navigation along tuples is allowed

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 7



Investigations on Data Logics

• In many papers it is mentioned that system verification is one of the

main motivations for the investigation of data logics:

◮ Data values can be used to represent process IDs and data

words to represent system runs.

◮ Data logics can be used to specify system properties.

• Nevertheless, the most investigated question is rather satisfiability

than model checking.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 8



Our Main Motivation

• We want to consider the model checking problem with data logics

on models which

◮ describe the behavior of concurrent systems with unboundedly

many processes, and

◮ produce system runs which can be represented by data words if

process IDs are identified by data values.

➞ Model Checking on models producing restricted data words can

deliver good decidability and complexity results.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 9



Dynamic Communicating Automata (DCA)

• Introduced by [Bollig and Hélouët 10]

• Extension of communicating finite state machines [Brand and

Zafiropulo 83]

• Allows the creation of fresh processes

• Communication between processes through communication

channels

• Maintenance of communication by storing process ID in registers

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 10



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

spawn

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3

spawn

1
2

spawn

2
3

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3
m(1)

spawn

1
2

spawn

2
3

se(m)

2
3

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3
m(1)

n(3)

spawn

1
2

spawn

2
3

se(m)

2
3

se(n)

2
1

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3

n(3)

spawn

1
2

spawn

2
3

se(m)

2
3

se(n)

2
1

rec(m)

3
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3

spawn

1
2

spawn

2
3

se(m)

2
3

se(n)

2
1

rec(m)

3
2

rec(n)

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3o

spawn

1
2

spawn

2
3

se(m)

2
3

se(n)

2
1

rec(m)

3
2

rec(n)

1
2

se(o)

1
2

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



A 2-variable DCA

a

b

c

d

e

f

g

sp(r1, r2, a)se(r1,m(r2))
se(r2,m(r1))

re(r2,m, r1)

re(r1,m, r2)

sp(r2, r1, g)

se(r2, o)

1 2

3

4

o

spawn

1
2

spawn

2
3

se(m)

2
3

se(n)

2
1

rec(m)

3
2

rec(n)

1
2

se(o)

1
2

spawn

3
4

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 11



The Model Checking Problem on DCA

The Model Checking Problem on DCA

Given: A DCA A and a formula ϕ of a data logic

Question: Does ϕ hold on all accepting runs of A?

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 12



First Insights – Undecidability Results

Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels

is undecidable.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 13



First Insights – Undecidability Results

Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels

is undecidable.

Proof idea

• By reduction from the nonemptiness problem for 2-counter

automata.

◮ A chain of processes can represent a counter value.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 13



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H

(a1,F1, i1)
·
·
·

(an,Fn, in)

(b1,G1, c1,Hn, i
′
1
)

·
·
·

(bm,Gm, cm,Hm, i′
m
)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)

∅

(a1, ∅, i1)
·
·
·

(an, ∅, in)

(b1, ∅, c1, ∅, i
′
1
)

·
·
·

(bm, ∅, cm, ∅, i′
m
)

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



First Insights – A Decidability Result

Theorem

The model checking problem for 1-variable-DCA with bounded

channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA A and a formula ϕ we decide whether there is an

accepting run satisfying ¬ϕ.

2. Reduction to a reachability problem in an infinite state system.

H0

(a0,F0, 1)

∅

(a1, ∅, i1)
·
·
·

(an, ∅, in)

(b1, ∅, c1, ∅, i
′
1
)

·
·
·

(bm, ∅, cm, ∅, i′
m
)

3. Reduction to the nonemptiness problem for multi-counter

automata without zero-tests.
Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 14



Further Directions

• Model Checking of DCA where communication paths between

processes are always bounded remains decidable.

◮ How can DCA be restricted such that this property holds on all

runs?

• Consider model checking on models which describe the global

behavior of a system: register automata, register pushdown

automata, MSC-based models.

Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics � � Slide 15


