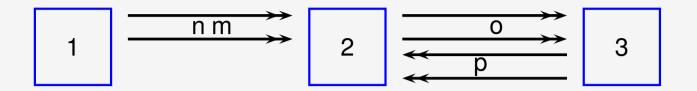
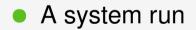
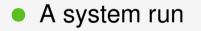
Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics

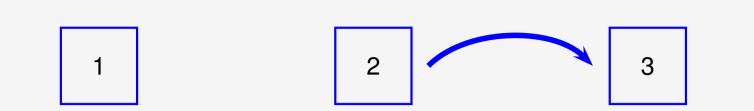
Ahmet Kara

MOVEP 2012, Marseille





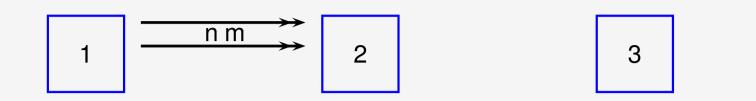




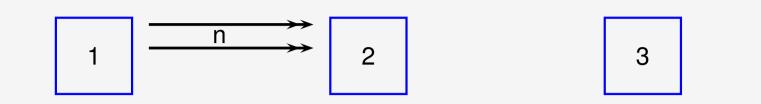
• A system run

• A system run

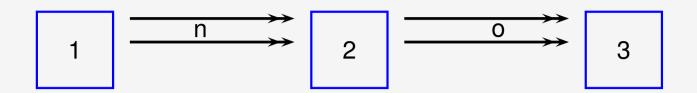
spawn	spawn	se(m)
1	2	1
2	3	2



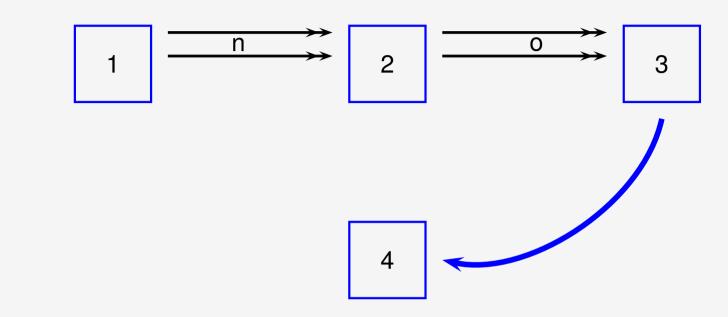
spawn	spawn	se(m)	se(n)
1	2	1	1
2	3	2	2



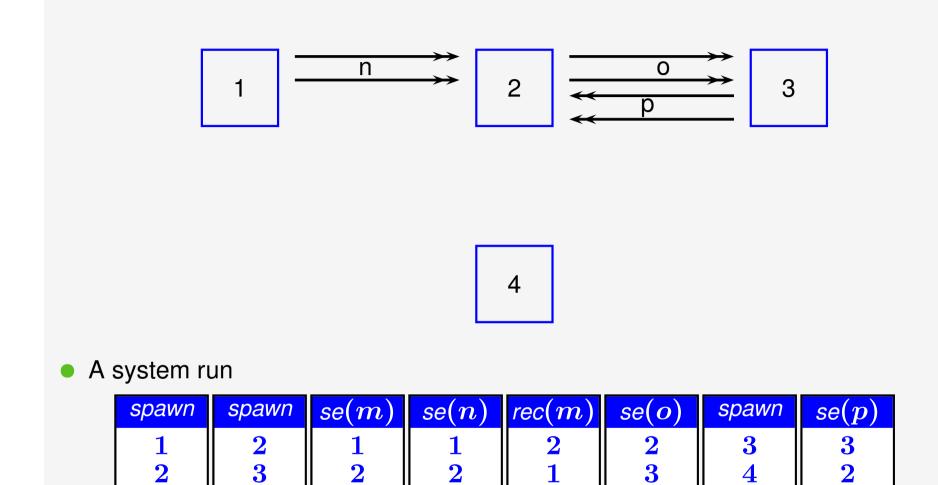
spawn	spawn	se(m)	se(n)	rec(m)
1	2	1	1	2
2	3	2	2	1

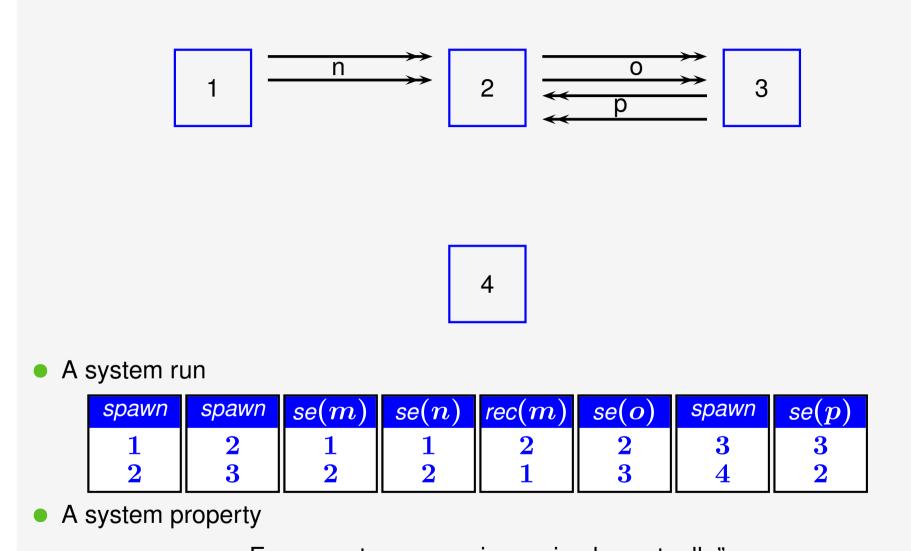


spawn	spawn	se(m)	se(n)	rec(m)	se(o)
1	2	1	1	2	2
2	3	2	2	1	3



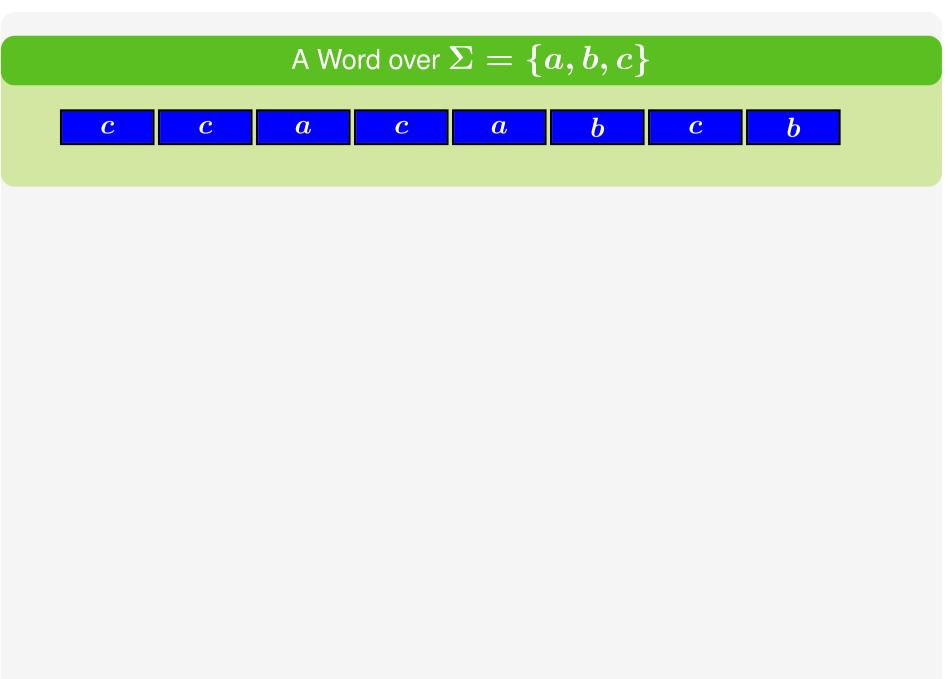
spawn	spawn	se(m)	se(n)	rec(m)	se(o)	spawn
1	2	1	1	2	2	3
2	3	2	2	1	3	4



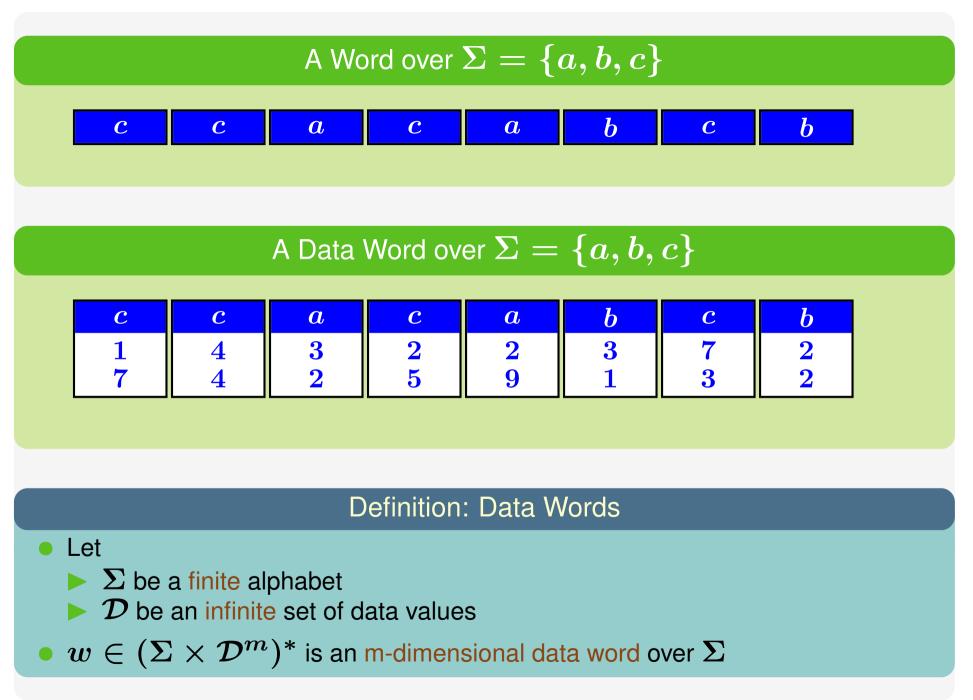


"Every sent message is received eventually."
$$\bigwedge_m G(se(m) \to \downarrow x.Frec(m) \land x_{@_1} \sim @_2 \land x_{@_2} \sim @_1)$$

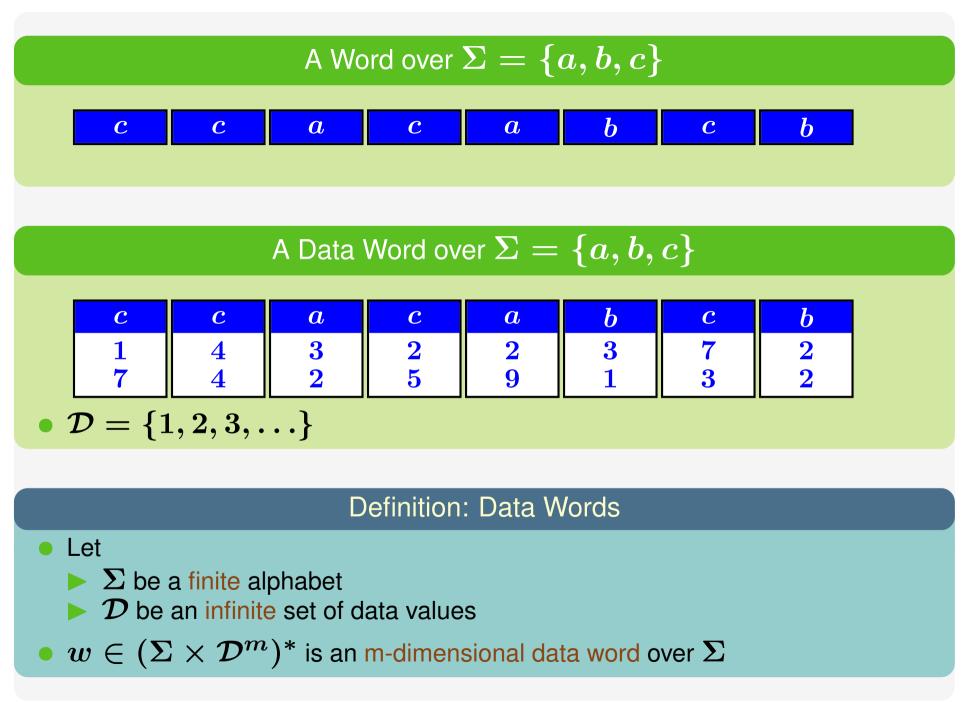
Words and Data Words



Words and Data Words



Words and Data Words



Logics on Data Words – Data Logics

- Even very weak logics on data words have an undecidable satisfiability problem.
 - First order logic with only three variables is not decidable [Bojańczyk et al. 06]
 - \blacktriangleright LTL is in general not decidable [Demri et al. 06]
- Focus on restricted logics where the only predicate on data values is the equality relation

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - contains the usual temporal operators like $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example

"There is a b-position such that an a-position with the same data value follows somewhere in the future."

 $\mathbf{F}(b \wedge \downarrow x.\mathbf{F}(a \wedge x_{@_1} \sim @_1)))$

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

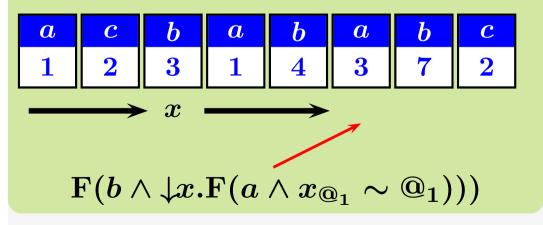
Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - contains the usual temporal operators like X, F, U, ...
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example



- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - contains the usual temporal operators like $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

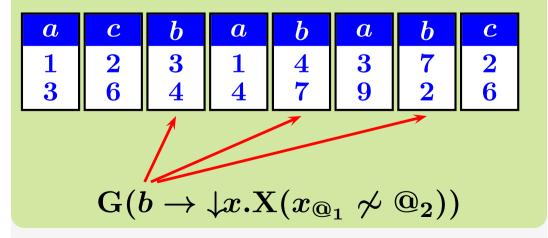
Example

"The first data value of every b-position is different from the second data value of its next position."

$\mathrm{G}(b ightarrow \downarrow x.\mathrm{X}(x_{@_1} \not\sim @_2))$

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - contains the usual temporal operators like X, F, U, ...
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example

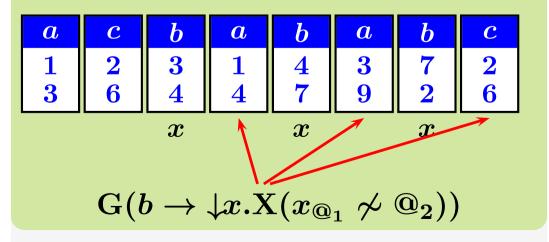


- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - contains the usual temporal operators like $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example



- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the x-position with the data values of a current position

Example

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example

"The first data value of every b-position is different from the second data value of its next position."

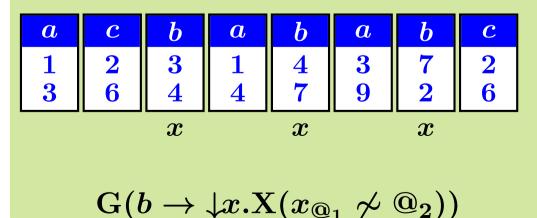
Theorem [Demri et al. 06]

- Satisfiability is decidable on
 - 1-dimensional data words if
 - only one variable and
 - only future operators are used.
- Complexity: not primitive recursive

- Freeze LTL ($\mathbf{LTL}^{\Downarrow}$) [Demri et al. 06]:
 - \blacktriangleright contains the usual temporal operators like ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - \blacktriangleright allows to put a variable x on a position
 - allows to compare the data values of the *x*-position with the data values of a current position

Example

"The first data value of every b-position is different from the second data value of its next position."



Theorem [Demri et al. 06]

- Satisfiability is decidable on
 - 1-dimensional data words if
 - only one variable and
 - only future operators are used.
- Complexity: not primitive recursive
- Satisfiability is undecidable if
 - more than one variable or
 - past operators are added.

- Data LTL [K. et al. 06]:
 - \blacktriangleright allows navigation on consecutive position via ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $X^{=}, F^{=}, U^{=}, \dots$

- Data LTL [K. et al. 06]:
 - \blacktriangleright allows navigation on consecutive position via ${\bf X}, {\bf F}, {\bf U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $\mathbf{X}^{=}, \mathbf{F}^{=}, \mathbf{U}^{=}, \dots$

Example

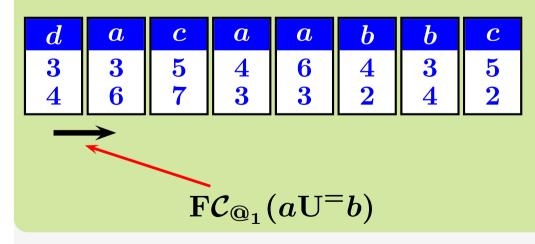
d	\boldsymbol{a}	С	a	a	b	b	С	
3	3	5	4	6 3	4	3	5	
4	6	7	3	3	2	4	2	

$$\mathrm{F}\mathcal{C}_{@_1}(a\mathrm{U}^=b)$$

- Data LTL [K. et al. 06]:
 - allows navigation on consecutive position via $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $X^{=}, F^{=}, U^{=}, \dots$

Example

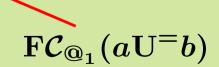


- Data LTL [K. et al. 06]:
 - allows navigation on consecutive position via $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $X^{=}, F^{=}, U^{=}, \dots$

Example

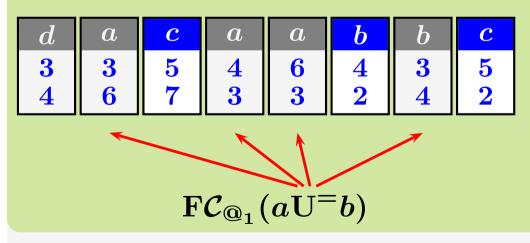
d	a	С	a	a	b	b	С
3 4	3	5	4 3	6	4	3 4	5
4	6	7	3	3	2	4	2



- Data LTL [K. et al. 06]:
 - allows navigation on consecutive position via $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $X^{=}, F^{=}, U^{=}, \dots$

Example



Logics on Data Words – Data LTL

- Data LTL [K. et al. 06]:
 - allows navigation on consecutive position via $\mathbf{X}, \mathbf{F}, \mathbf{U}, \ldots$
 - allows navigation on positions carrying the same data value via

 $\mathbf{X}^{=}, \mathbf{F}^{=}, \mathbf{U}^{=}, \dots$

Example

"There is some position such that on the subword induced by its first data value it holds a until b."

d	a	С	a	a	b	b	С	
3	3	5	4	6	4 2	3	5	
4	6	7	3	3	2	4	2	

$\mathrm{F}\mathcal{C}_{@_1}(a\mathrm{U}^=b)$

Theorem ([K. et al. 06])

- Satisfiability is decidable on
 - multi-dimensional data words with
 - future and past operators.
- Precise complexity not known but presumably very bad.
- Satisfiability is undecidable if
 - navigation along tuples is allowed

Investigations on Data Logics

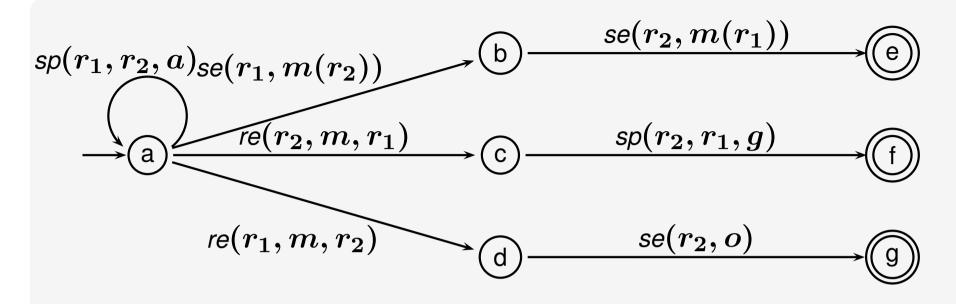
- In many papers it is mentioned that system verification is one of the main motivations for the investigation of data logics:
 - Data values can be used to represent process IDs and data words to represent system runs.
 - Data logics can be used to specify system properties.
- Nevertheless, the most investigated question is rather satisfiability than model checking.

Our Main Motivation

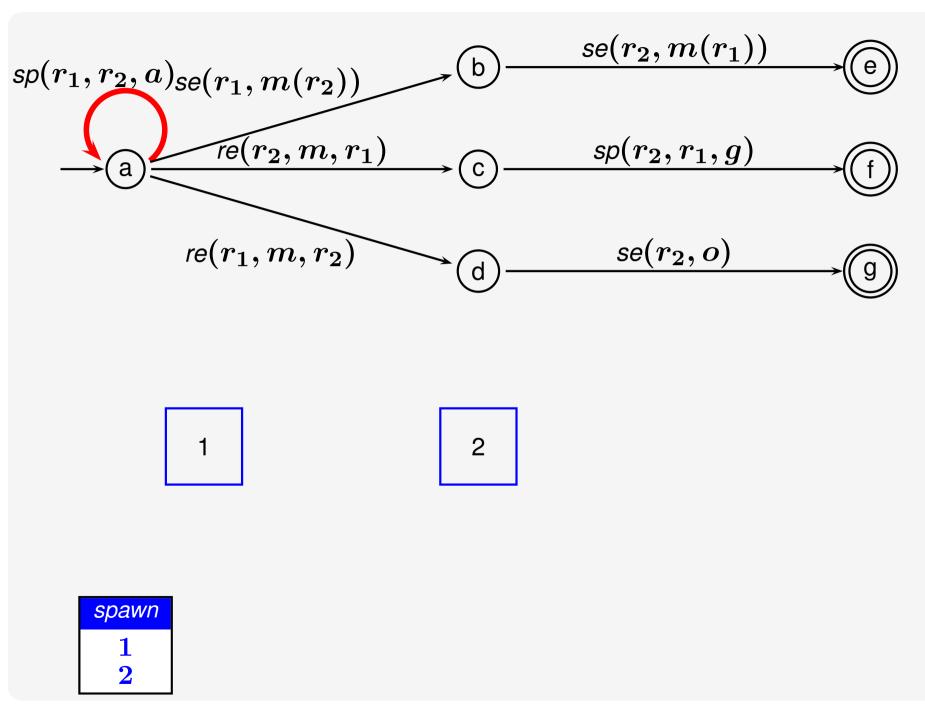
- We want to consider the model checking problem with data logics on models which
 - describe the behavior of concurrent systems with unboundedly many processes, and
 - produce system runs which can be represented by data words if process IDs are identified by data values.
- Model Checking on models producing restricted data words can deliver good decidability and complexity results.

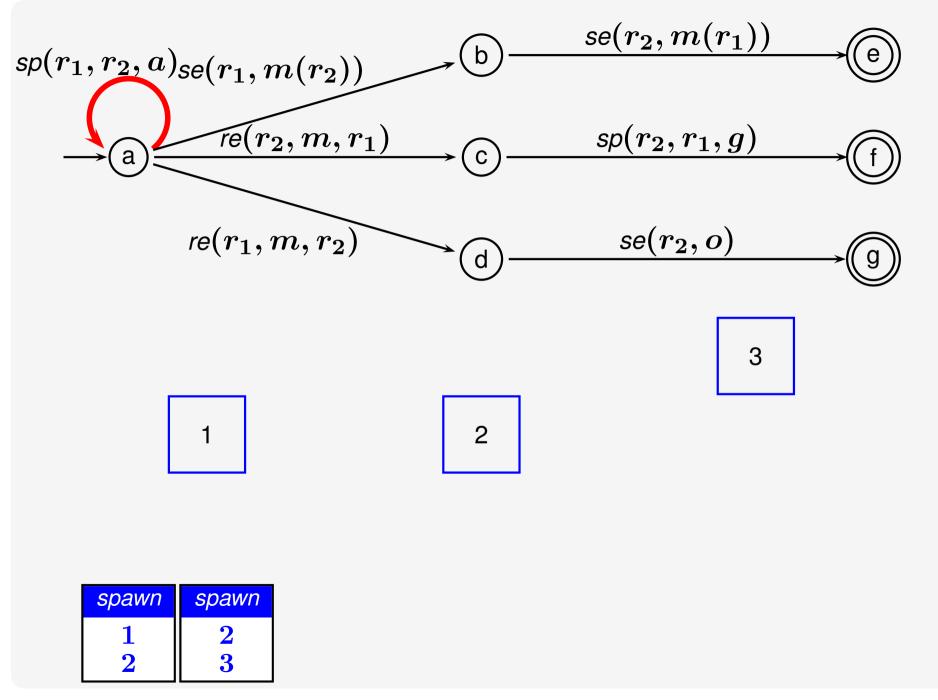
Dynamic Communicating Automata (DCA)

- Introduced by [Bollig and Hélouët 10]
- Extension of communicating finite state machines [Brand and Zafiropulo 83]
- Allows the creation of fresh processes
- Communication between processes through communication channels
- Maintenance of communication by storing process ID in registers

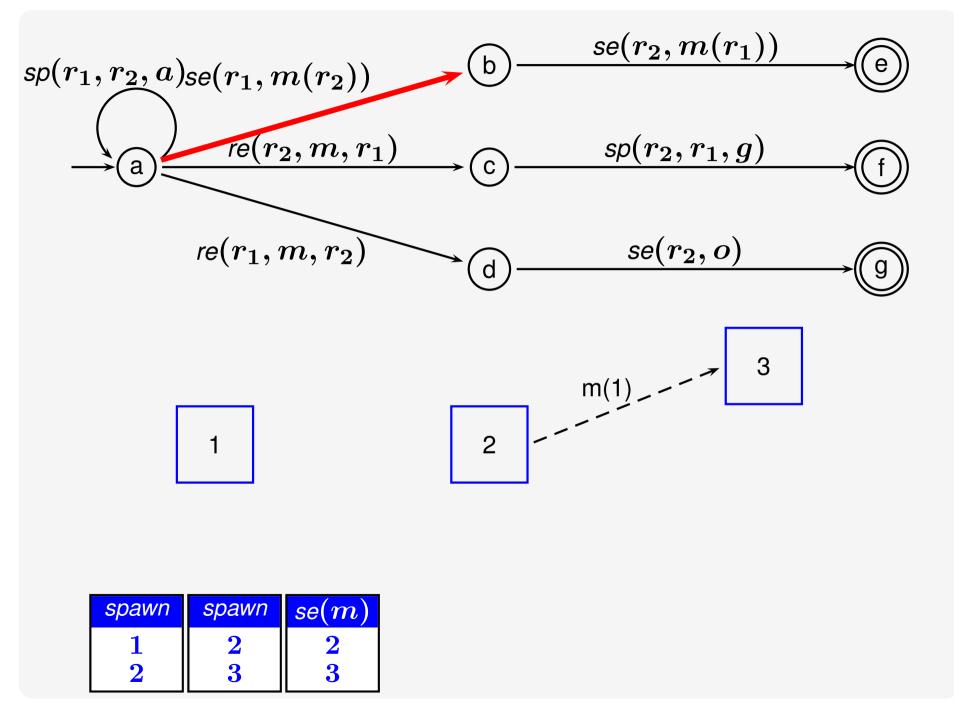


Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics << > Slide 11

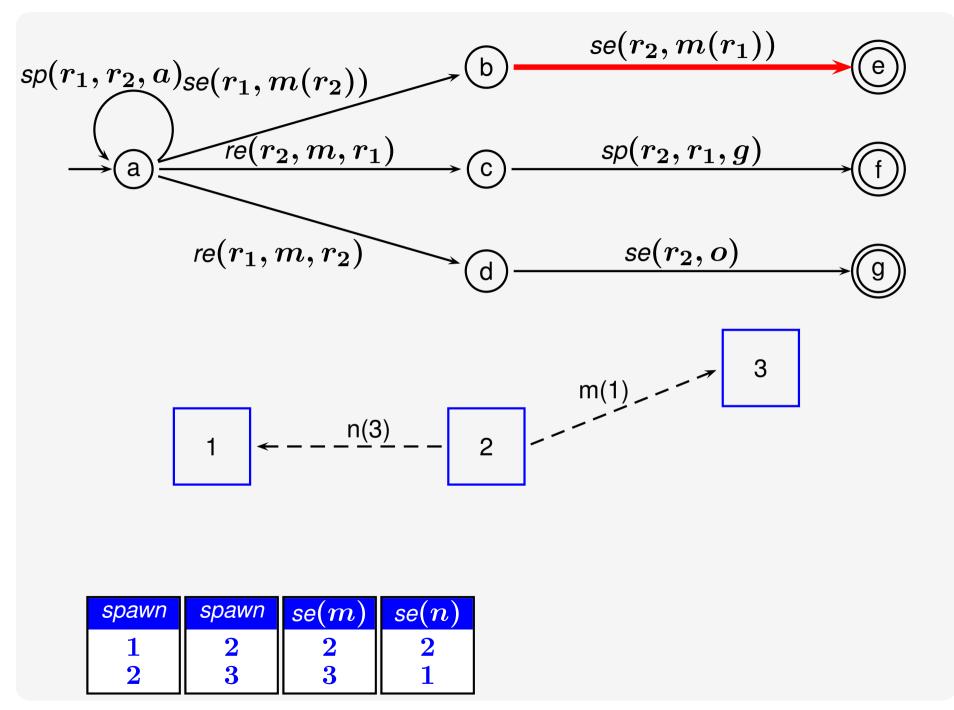




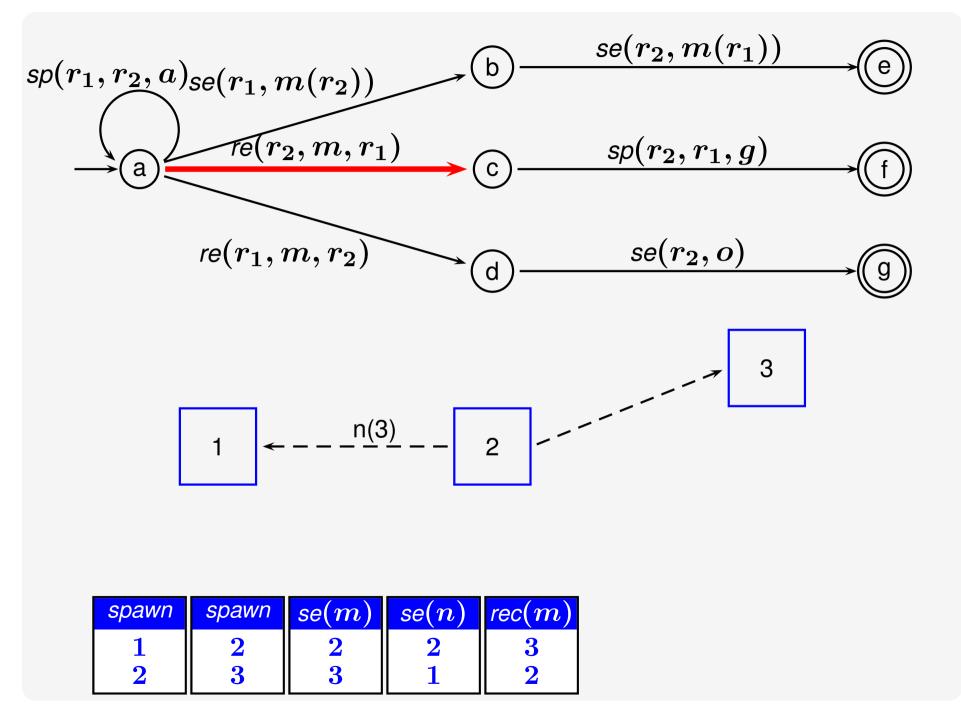
Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics << > Slide 11



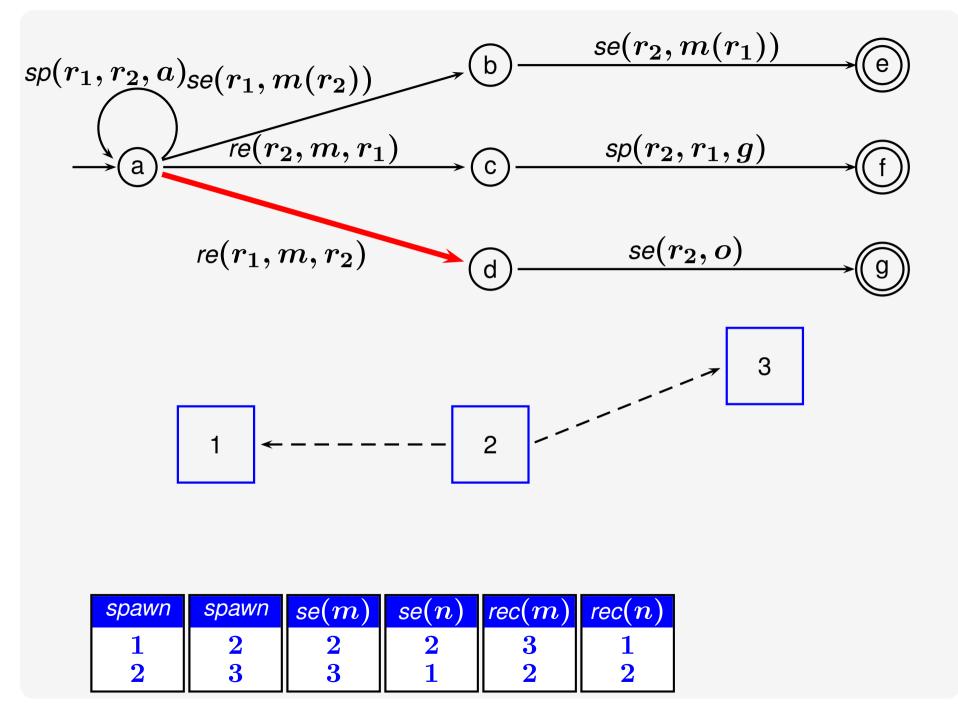
Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics <>>> Slide 11



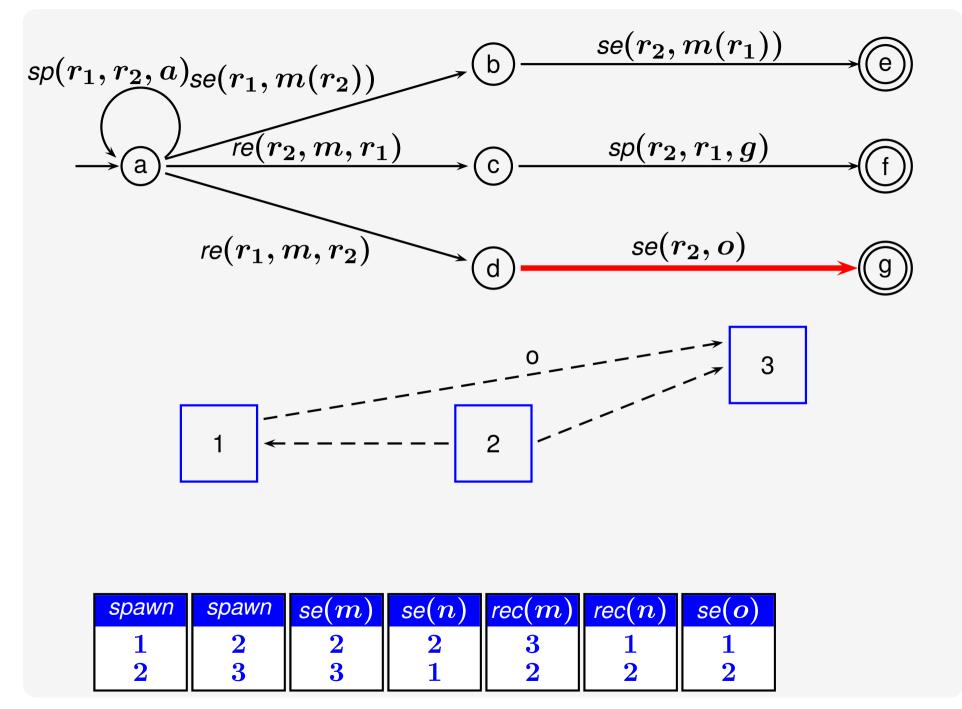
Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics << > Slide 11



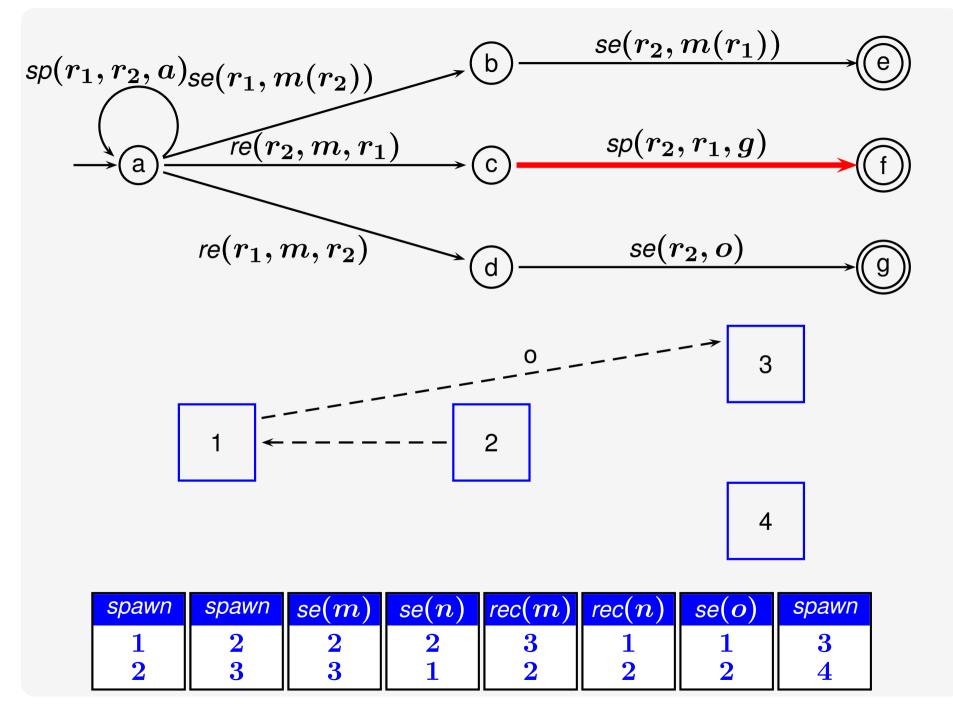
Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics <>>> Slide 11



Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics <>>> Slide 11



Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics << > Slide 11



Ahmet Kara Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics <>>> Slide 11

The Model Checking Problem on DCA

The Model Checking Problem on DCA

Given: A DCA \mathcal{A} and a formula φ of a data logic Question: Does φ hold on all accepting runs of \mathcal{A} ?

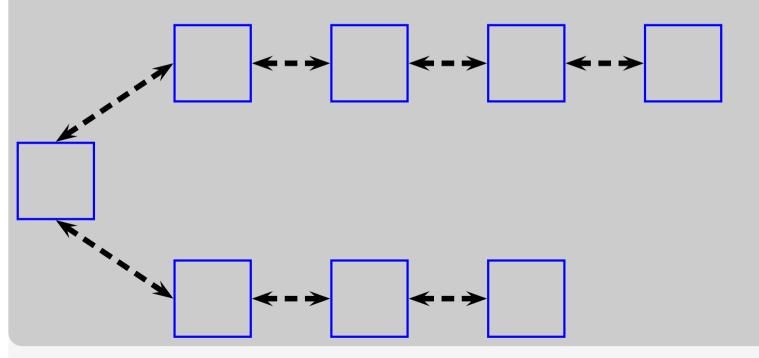
Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels is undecidable.

Theorem

The nonemptiness problem for 2-variable-DCA with bounded channels is undecidable.

- By reduction from the nonemptiness problem for 2-counter automata.
 - A chain of processes can represent a counter value.



Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

Proof idea

1. Given a DCA \mathcal{A} and a formula φ we decide whether there is an accepting run satisfying $\neg \varphi$.

Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

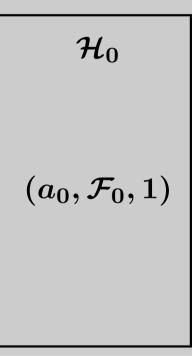
- 1. Given a DCA \mathcal{A} and a formula φ we decide whether there is an accepting run satisfying $\neg \varphi$.
- 2. Reduction to a reachability problem in an infinite state system.

$$egin{aligned} \mathcal{H} \ & (a_1,\mathcal{F}_1,i_1) \ & dots \ & (a_n,\mathcal{F}_n,i_n) \ & (b_1,\mathcal{G}_1,c_1,\mathcal{H}_n,i_1') \ & dots \ & dots$$

Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

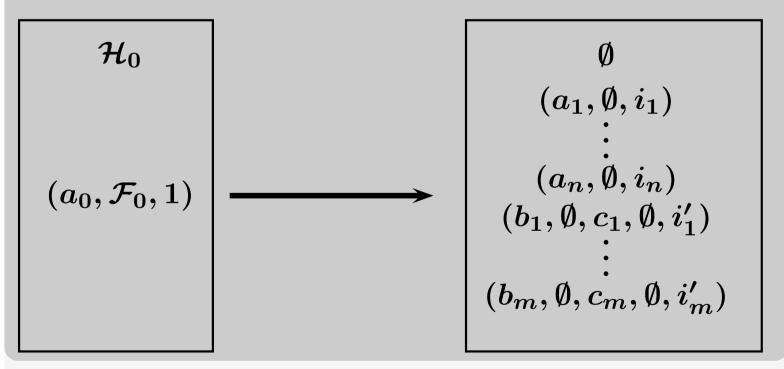
- 1. Given a DCA \mathcal{A} and a formula φ we decide whether there is an accepting run satisfying $\neg \varphi$.
- 2. Reduction to a reachability problem in an infinite state system.



Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

- 1. Given a DCA \mathcal{A} and a formula φ we decide whether there is an accepting run satisfying $\neg \varphi$.
- 2. Reduction to a reachability problem in an infinite state system.

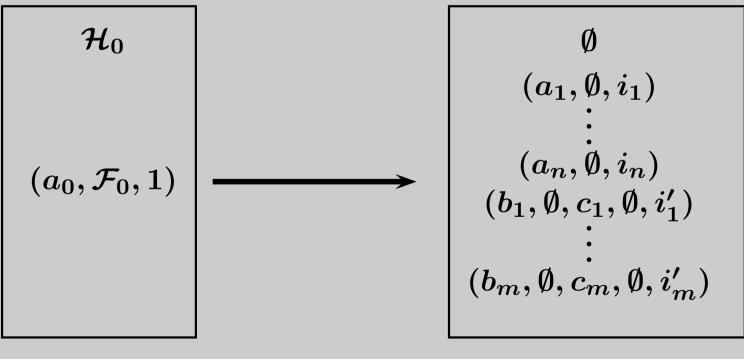


Theorem

The model checking problem for 1-variable-DCA with bounded channel capacities and Data LTL is decidable.

Proof idea

- 1. Given a DCA \mathcal{A} and a formula φ we decide whether there is an accepting run satisfying $\neg \varphi$.
- 2. Reduction to a reachability problem in an infinite state system.



3. Reduction to the nonemptiness problem for multi-counter automata without zero-tests.

Ahmet Kara

Model Checking Concurrent Systems with Unboundedly Many Processes Using Data Logics << > Slide 14

Further Directions

- Model Checking of DCA where communication paths between processes are always bounded remains decidable.
 - How can DCA be restricted such that this property holds on all runs?
- Consider model checking on models which describe the *global* behavior of a system: register automata, register pushdown automata, MSC-based models.