
Technical Talk on

Runtime Verification

Martin Leucker

Institute for Software Engineering

Universität zu Lübeck

Marseille, Monday 3rd of December 2012

Martin Leucker MOVEP, 12/03/12 1/103

Runtime Verification (RV)

S1

S2

S3

S4

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

Martin Leucker MOVEP, 12/03/12 2/103

Runtime Verification (RV)

S1

S2

S3

S4

M

always (not x > 0 implies next x > 0)

Characterisation

◮ Verifies (partially)

correctness properties

based on actual executions

◮ Simple verification technique

◮ Complementing
◮ Model Checking
◮ Testing

◮ Formal: w ∈ L(ϕ)

Martin Leucker MOVEP, 12/03/12 2/103

Model Checking

◮ Specification of System

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking

◮ Specification of System
◮ as formula ϕ of linear-time temporal logic (LTL)
◮ with models L(ϕ)

◮ Model of System
◮ as transition system S with runs L(S)

◮ Model Checking Problem:
Do all runs of the system satisfy the specification

◮ L(S) ⊆ L(ϕ)

Martin Leucker MOVEP, 12/03/12 3/103

Model Checking versus RV

◮ Model Checking: infinite words

Martin Leucker MOVEP, 12/03/12 4/103

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words

Martin Leucker MOVEP, 12/03/12 4/103

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

Martin Leucker MOVEP, 12/03/12 4/103

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

Martin Leucker MOVEP, 12/03/12 4/103

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

Martin Leucker MOVEP, 12/03/12 4/103

Model Checking versus RV

◮ Model Checking: infinite words

◮ Runtime Verification: finite words
◮ yet continuously expanding words

◮ In RV: Complexity of monitor generation is of less importance than

complexity of the monitor

◮ Model Checking: White-Box-Systems

◮ Runtime Verification: also Black-Box-Systems

Martin Leucker MOVEP, 12/03/12 4/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

Martin Leucker MOVEP, 12/03/12 5/103

Testing

Testing: Input/Output Sequence

◮ incomplete verification technique

◮ test case: finite sequence of input/output actions

◮ test suite: finite set of test cases

◮ test execution: send inputs to the system and check whether the actual

output is as expected

Testing: with Oracle

◮ test case: finite sequence of input actions

◮ test oracle: monitor

◮ test execution: send test cases, let oracle report violations

◮ similar to runtime verification

Martin Leucker MOVEP, 12/03/12 5/103

Testing versus RV

◮ Test oracle manual

Martin Leucker MOVEP, 12/03/12 6/103

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

Martin Leucker MOVEP, 12/03/12 6/103

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

Martin Leucker MOVEP, 12/03/12 6/103

Testing versus RV

◮ Test oracle manual

◮ RV monitor from high-level specification (LTL)

◮ Testing:

How to find good test suites?

◮ Runtime Verification:

How to generate good monitors?

Martin Leucker MOVEP, 12/03/12 6/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 7/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 8/103

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Martin Leucker MOVEP, 12/03/12 9/103

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the

study, development, and application of those verification techniques that

allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.

Martin Leucker MOVEP, 12/03/12 9/103

Taxonomy

runtime

verification

trace

finite

finite non-

completed

infinite

integration

inline

outline

stage

online

offline

interference

invasive

non-invasive

steering

activepassive

monitoring

input/

output

behavior

state se-

quence

event

sequence

application

area

safety

checking

security

information

collection

performance

evaluation

Martin Leucker MOVEP, 12/03/12 10/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 11/103

Runtime Verification for LTL

Observing executions/runs

Martin Leucker MOVEP, 12/03/12 12/103

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Martin Leucker MOVEP, 12/03/12 12/103

Runtime Verification for LTL

Observing executions/runs

Idea

Specify correctness properties in LTL

Commercial

Specify correctness properties in Regular LTL

Martin Leucker MOVEP, 12/03/12 12/103

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker MOVEP, 12/03/12 13/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X√

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X√
√

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X√
√

Abbreviation

Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Martin Leucker MOVEP, 12/03/12 14/103

Linear-time Temporal Logic (LTL)

Semantics

over w ∈ (2AP)ω = Σω

{p, q} p p q q . . .

|=

p

¬p

pUq

X(pUq)

√

X√
√

Abbreviation

Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ

Example

G¬(critic1 ∧ critic2), G(¬alive → Xalive)

Martin Leucker MOVEP, 12/03/12 14/103

LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = a0a1 . . . ∈ Σω , where

wi = aiai+1 . . .

w |= true

w |= p if p ∈ a0

w |= ¬p if p 6∈ a0

w |= ¬ϕ if not w |= ϕ

w |= ϕ ∨ ψ if w |= ϕ or w |= ψ

w |= ϕ ∧ ψ if w |= ϕ and w |= ψ

w |= Xϕ if w1 |= ϕ

w |= X̄ϕ if w1 |= ϕ

w |= ϕ U ψ if there is k with 0 ≤ k < |w|: wk |= ψ

and for all l with 0 ≤ l < k wl |= ϕ

w |= ϕ R ψ if for all k with 0 ≤ k < |w|: (wk |= ψ

or there is l with 0 ≤ l < k wl |= ϕ)

Martin Leucker MOVEP, 12/03/12 15/103

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

Martin Leucker MOVEP, 12/03/12 16/103

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic

“Syntactic Sugar for LTL” [Bauer, L., Streit@ICFEM’06]

Martin Leucker MOVEP, 12/03/12 16/103

SALT – http://www.isp.uni-luebeck.de/salt

Martin Leucker MOVEP, 12/03/12 17/103

http://www.isp.uni-luebeck.de/salt

Runtime Verification for LTL

Idea

Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.

The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ |
false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ |
¬ϕ

Martin Leucker MOVEP, 12/03/12 18/103

Truth Domains

Lattice

◮ A lattice is a partially ordered set (L,⊑) where for each x, y ∈ L, there
exists

1. a unique greatest lower bound (glb), which is called the meet of x and y, and

is denoted with x ⊓ y, and

2. a unique least upper bound (lub), which is called the join of x and y, and is

denoted with x ⊔ y.

◮ A lattice is called finite iff L is finite.

◮ Every finite lattice has a well-defined unique least element, called

bottom, denoted with ⊥,

◮ and analogously a greatest element, called top, denoted with ⊤.

Martin Leucker MOVEP, 12/03/12 19/103

Truth Domains (cont.)

Lattice (cont.)

◮ A lattice is distributive, iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z), and, dually,

x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z).

◮ In a de Morgan lattice, every element x has a unique dual element x,

such that x = x and x ⊑ y implies y ⊑ x.

Definition (Truth domain)

We call L a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker MOVEP, 12/03/12 20/103

LTL’s semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = a0a1 . . . ∈ Σ∞

Boolean constants

[w |= true]L = ⊤

[w |= false]L = ⊥

Boolean combinations

[w |= ¬ϕ]L = [w |= ϕ]L

[w |= ϕ ∨ ψ]L = [w |= ϕ]L ⊔ [w |= ψ]L

[w |= ϕ ∧ ψ]L = [w |= ϕ]L ⊓ [w |= ψ]L

atomic propositions

[w |= p]L =







⊤ if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]L =







⊤ if p /∈ a0

⊥ if p ∈ a0

next X/weak next X TBD

until/release

[w |= ϕ U ψ]L =















⊤ there is a k, 0 ≤ k < |w| : [wk |= ψ]L = ⊤ and

for all l with 0 ≤ l < k : [wl |= ϕ] = ⊤

TBD else

ϕ R ψ ≡ ¬(¬ϕ U ¬ψ)

Martin Leucker MOVEP, 12/03/12 21/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 22/103

LTL on finite words

Application area: Specify properties of finite word

Martin Leucker MOVEP, 12/03/12 23/103

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊥ otherwise

weak next

[u |= X̄ϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊤ otherwise

Martin Leucker MOVEP, 12/03/12 24/103

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker MOVEP, 12/03/12 25/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 26/103

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

Martin Leucker MOVEP, 12/03/12 27/103

LTL on finite, but not completed words

Be Impartial!

◮ go for a final verdict (⊤ or ⊥) only if you really know

Martin Leucker MOVEP, 12/03/12 28/103

LTL on finite, but not completed words

Be Impartial!

◮ go for a final verdict (⊤ or ⊥) only if you really know

◮ be a man: stick to your word

Martin Leucker MOVEP, 12/03/12 28/103

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)

Semantics of FLTL formulae over a word u = a0 . . . an−1 ∈ Σ∗

next

[u |= Xϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊥p otherwise

weak next

[u |= X̄ϕ]F =







[u1 |= ϕ]F if u1 6= ǫ

⊤p otherwise

Martin Leucker MOVEP, 12/03/12 29/103

Monitoring LTL on finite but expanding words

Left-to-right!

Martin Leucker MOVEP, 12/03/12 30/103

Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter

◮ evaluate atomic propositions

◮ evaluate next-formulas

◮ that’s it thanks to

ϕ U ψ ≡ ψ ∨ (ϕ ∧ Xϕ U ψ)

and

ϕ R ψ ≡ ψ ∧ (ϕ ∨ X̄ϕ R ψ)

◮ and remember what to evaluate for the next letter

Martin Leucker MOVEP, 12/03/12 31/103

Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥
p
,ϕ)

evalFLTL4 X̄ϕ a = (⊤
p
,ϕ)

Martin Leucker MOVEP, 12/03/12 32/103

Monitoring LTL on finite but expanding words

Automata-theoretic approach

◮ Synthesize automaton

◮ Monitoring = stepping through automaton

Martin Leucker MOVEP, 12/03/12 33/103

Rewriting vs. automata

Rewriting function defines transition function

evalFLTL4 true a = (⊤,⊤)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)

evalFLTL4 ϕ ∨ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊔ valPsi,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi,phiRew) = evalFLTL4 ϕ a

(valPsi,psiRew) = evalFLTL4 ψ a

in (valPhi ⊓ valPsi,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧ X(ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄(ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥
p
,ϕ)

evalFLTL4 X̄ϕ a = (⊤
p
,ϕ)

Martin Leucker MOVEP, 12/03/12 34/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

Martin Leucker MOVEP, 12/03/12 35/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

Martin Leucker MOVEP, 12/03/12 35/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

Martin Leucker MOVEP, 12/03/12 35/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

Martin Leucker MOVEP, 12/03/12 35/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

Martin Leucker MOVEP, 12/03/12 35/103

Automata-theoretic approach

The roadmap

◮ alternating Mealy machines

◮ Moore machines

◮ alternating machines

◮ non-deterministic machines

◮ deterministic machines

◮ state sequence for an input word

Martin Leucker MOVEP, 12/03/12 35/103

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q,Σ,Γ, q0, δ) where

◮ Q is a finite set of states,

◮ Σ is the input alphabet,

◮ Γ is a finite, distributive lattice, the output lattice,

◮ q0 ∈ Q is the initial state and

◮ δ : Q × Σ → B+(Γ× Q) is the transition function

Martin Leucker MOVEP, 12/03/12 36/103

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q,Σ,Γ, q0, δ) where

◮ Q is a finite set of states,

◮ Σ is the input alphabet,

◮ Γ is a finite, distributive lattice, the output lattice,

◮ q0 ∈ Q is the initial state and

◮ δ : Q × Σ → B+(Γ× Q) is the transition function

Convention

Understand δ : Q × Σ → B+(Γ× Q) as a function δ : Q × Σ → Γ× B+(Q)

Martin Leucker MOVEP, 12/03/12 36/103

Supporting alternating finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q,Σ,Γ, q0, δ) on a finite word

u = a0 . . . an−1 ∈ Σ+ is a sequence t0
(a0,b0)→ t1

(a1,b1)→ . . . tn−1

(an−1,bn−1)→ tn such

that

◮ t0 = q0 and

◮ (ti, bi−1) = δ̂(ti−1, ai−1)

where δ̂ is inductively defined as follows

◮ δ̂(q, a) = δ(q, a),

◮ δ̂(q ∨ q′, a) = (δ̂(q, a)|1 ⊔ δ̂(q′, a)|1, δ̂(q, a)|2 ∨ δ̂(q′, a)|2), and

◮ δ̂(q ∧ q′, a) = (δ̂(q, a)|1 ⊓ δ̂(q′, a)|1, δ̂(q, a)|2 ∧ δ̂(q′, a)|2)
The output of the run is bn−1.

Martin Leucker MOVEP, 12/03/12 37/103

Transition function of an alternating Mealy machine

Transition function δa
4 : Q × Σ → B+(Γ× Q)

δa
4(true, a) = (⊤, true)

δa
4(false, a) = (⊥, false)

δa
4(p, a) = (p ∈ a, [p ∈ a])

δa
4(ϕ ∨ ψ, a) = δa

4(ϕ, a) ∨ δa
4(ψ, a)

δa
4(ϕ ∧ ψ, a) = δa

4(ϕ, a) ∧ δa
4(ψ, a)

δa
4(ϕ U ψ, a) = δa

4(ψ ∨ (ϕ ∧ X(ϕ U ψ)), a)

= δa
4(ψ, a) ∨ (δa

4(ϕ, a) ∧ (ϕ U ψ))

δa
4(ϕ R ψ, a) = δa

4(ψ ∧ (ϕ ∨ X̄(ϕ R ψ)), a)

= δa
4(ψ, a) ∧ (δa

4(ϕ, a) ∨ (ϕ R ψ))

δa
4(Xϕ, a) = (⊥p, ϕ)

δa
4(X̄ϕ, a) = (⊤p, ϕ)

Martin Leucker MOVEP, 12/03/12 38/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 39/103

Anticipatory Semantics

Consider possible extensions of the non-completed word

Martin Leucker MOVEP, 12/03/12 40/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 41/103

LTL for RV [BLS@FSTTCS’06]

Basic idea

◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

Martin Leucker MOVEP, 12/03/12 42/103

LTL for RV [BLS@FSTTCS’06]

Basic idea

◮ LTL over infinite words is commonly used for specifying correctness

properties

◮ finite words in RV:

prefixes of infinite, so-far unknown words

◮ re-use existing semantics

3-valued semantics for LTL over finite words

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

Martin Leucker MOVEP, 12/03/12 42/103

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Martin Leucker MOVEP, 12/03/12 43/103

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

Martin Leucker MOVEP, 12/03/12 43/103

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

Martin Leucker MOVEP, 12/03/12 43/103

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

Martin Leucker MOVEP, 12/03/12 43/103

Impartial Anticipation

Impartial

◮ Stay with ⊤ and ⊥

Anticipatory

◮ Go for ⊤ or ⊥
◮ Consider XXXfalse

ǫ |= XXXfalse

a |= XXfalse

aa |= Xfalse

aaa |= false

[ǫ |= XXXfalse] =



















⊤ if ∀σ ∈ Σω : ǫσ |= XXXfalse

⊥ if ∀σ ∈ Σω : ǫσ 6|= XXXfalse

? else
Martin Leucker MOVEP, 12/03/12 43/103

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

00 1

2

3 4

a

b

a

a, b

b
a

b

a b

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

aa

b

a

a, b

b
a

b

a b a

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 11

2

3 4

a

b

a

a, b

b
a

b

a b a

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

a

bb

a

a, b

b
a

b

a b a b

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

Emptiness test:

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker MOVEP, 12/03/12 44/103

Büchi automata (BA)

Emptiness test: SCCC, Tarjan

0 1

2

3 4

a

b

a

a, b

b
a

b

a b a b . . .

(ab)ω ∈ L(A)

(ab)∗aa{a, b}ω ⊆ L(A)

Martin Leucker MOVEP, 12/03/12 44/103

LTL to BA

[Vardi & Wolper ’86]

◮ Translation of an LTL formula ϕ into Büchi automata Aϕ with

L(Aϕ) = L(ϕ)

◮ Complexity: Exponential in the length of ϕ

Martin Leucker MOVEP, 12/03/12 45/103

Monitor construction – Idea I

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker MOVEP, 12/03/12 46/103

Monitor construction – Idea I

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker MOVEP, 12/03/12 46/103

Monitor construction – Idea I

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤

Martin Leucker MOVEP, 12/03/12 46/103

Monitor construction – Idea I

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? else

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

⊤
?

Martin Leucker MOVEP, 12/03/12 46/103

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

Martin Leucker MOVEP, 12/03/12 47/103

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

Martin Leucker MOVEP, 12/03/12 47/103

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

Martin Leucker MOVEP, 12/03/12 47/103

monitor construction – Idea II

0 1

2

3 4

a

b

a

a, b

b
a

b

⊥

6= ⊥

NFA

Fϕ : Qϕ → {⊤,⊥} Emptiness per state

Martin Leucker MOVEP, 12/03/12 47/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

Lemma

[u |= ϕ] =



















⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker MOVEP, 12/03/12 48/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ

Lemma

[u |= ϕ] =



















⊤

⊥ if u /∈ L(NFAϕ)

?

Martin Leucker MOVEP, 12/03/12 48/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

Lemma

[u |= ϕ] =



















⊤ if u /∈ L(NFA¬ϕ)

⊥ if u /∈ L(NFAϕ)

? else

Martin Leucker MOVEP, 12/03/12 48/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ

Martin Leucker MOVEP, 12/03/12 48/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

Martin Leucker MOVEP, 12/03/12 48/103

The complete construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

M

Martin Leucker MOVEP, 12/03/12 48/103

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker MOVEP, 12/03/12 49/103

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker MOVEP, 12/03/12 49/103

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker MOVEP, 12/03/12 49/103

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Martin Leucker MOVEP, 12/03/12 49/103

Complexity

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Complexity

|M| ≤ 22|ϕ|

Optimal result!

FSM can be minimised (Myhill-Nerode)

Martin Leucker MOVEP, 12/03/12 49/103

On-the-fly Construction

The construction

ϕ BAϕ Fϕ NFAϕ

¬ϕ BA¬ϕ F¬ϕ NFA¬ϕ

ϕ
DFAϕ

DFA¬ϕ

DFAϕ

DFA¬ϕ

M

Martin Leucker MOVEP, 12/03/12 50/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 51/103

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics

◮ LTL with Past

Martin Leucker MOVEP, 12/03/12 52/103

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics

◮ LTL with Past

◮ linear-time µ-calculus

Martin Leucker MOVEP, 12/03/12 52/103

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics

◮ LTL with Past

◮ linear-time µ-calculus

◮ RLTL

Martin Leucker MOVEP, 12/03/12 52/103

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics

◮ LTL with Past

◮ linear-time µ-calculus

◮ RLTL

◮ LTL with integer constraints

G(fopenx → ((x = Xx) U fclosex))

Martin Leucker MOVEP, 12/03/12 52/103

Linear-time Logic

Definition (Linear-time Logic)

A linear-time logic L defines

◮ a set FL of L-formulae and

◮ a two-valued semantics |=L.

Every L-formula ϕ ∈ FL has an associated and possibly infinite alphabet Σϕ.

Moreover, for every formula ϕ ∈ FL and every word σ ∈ Σω

ϕ, we require

(L1) ∀ϕ ∈ FL : ¬ϕ ∈ FL.

(L2) ∀σ ∈ Σω

ϕ : (σ |=L ϕ ⇔ σ 6|=L ¬ϕ).

Martin Leucker MOVEP, 12/03/12 53/103

Anticipation Semantics

Definition (Anticipation Semantics)

Let L be a linear-time logic. We define the anticipation semantics [π |= ϕ]L of

an L-formula ϕ ∈ FL and a finite word π ∈ Σ∗
ϕ with

[π |= ϕ]L =















⊤ if ∀σ ∈ Σω

ϕ : πσ |=L ϕ

⊥ if ∀σ ∈ Σω

ϕ : πσ 6|=L ϕ

? otherwise

Martin Leucker MOVEP, 12/03/12 54/103

Evaluation using decide

decide

[π |= ϕ]L =















⊤ if decide¬ϕ(π) = ⊥
⊥ if decideϕ(π) = ⊥
? otherwise

where decideϕ(π) is defined to return ⊤ for ϕ ∈ FL and π ∈ Σϕ if

∃σ ∈ Σω

ϕ : πσ |=L ϕ holds, and ⊥ otherwise.

Martin Leucker MOVEP, 12/03/12 55/103

The automata theoretic approach to SAT

Definition (Satisfiability Check by Automata Abstraction)

Given a linear-time logic L with its formulae FL, the satisfiability check by

automata abstraction proceeds as follows. For formula ϕ ∈ FL,

1. define alphabet abstraction Σϕ → Σ̄ϕ finite, abstract alphabet

2. define a word abstraction α(·) : Σω

ϕ → Σ̄ω

ϕ

3. define an automaton construction ϕ 7→ ω-automaton Aϕ over Σ̄ϕ such

that for all σ̄ ∈ Σ̄ω

ϕ it holds

σ̄ ∈ L(Aϕ) iff ∃σ ∈ Σω : σ̄ = α(σ) and σ |= ϕ

Then

ϕ satisfiable iff L(Aϕ) 6= ∅ iff non-empty(Aϕ)

Martin Leucker MOVEP, 12/03/12 56/103

From finite to infinite

Definition (extrapolate)

extrapolate(π) =
{

α(πσ)0...i | i + 1 = |π|, σ ∈ Σω

}

Definition (Accuracy of Abstract Automata)

accuracy of abstract automata property holds, if, for all π ∈ Σ∗,

◮ (∃σ : πσ |=L ϕ) ⇒ (∃π̄∃σ̄ : π̄σ̄ ∈ L(Aϕ)) with π̄ ∈ extrapolate(π),

◮ (∃σ̄ : π̄σ̄ ∈ L(Aϕ)) ⇒ (∃π∃σ : πσ |=L ϕ) with π̄ ∈ extrapolate(π).

Martin Leucker MOVEP, 12/03/12 57/103

Non-incremental version

Theorem (Correctness of decide)

Given a satisfiability check by automata abstraction for a linear-time logic L

satisfying the accuracy of automata property, we have

decide(π) = non-empty





⋃

q∈Q0,π̄∈extrapolate(π)

δ(q, π̄)





Martin Leucker MOVEP, 12/03/12 58/103

Faithful abstraction

Definition (Forgettable Past and Faithful Abstraction)

Given α of a satisfiability check by automata abstraction. We say that

◮ α satisfies the forgettable past property, iff

α(πaσ)i+1...i+1 = α(aσ)0...0

for all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, and σ ∈ Σω .

◮ α is called faithful, iff for all π ∈ Σ∗, |π| = i + 1, a ∈ Σ, σ, σ′ ∈ Σω for

which there is some σ′′ ∈ Σω with α(πσ)0...iα(aσ′)0...0 = α(σ′′)0...i+1

there also exists a σ′′′ ∈ Σω with

α(πσ)0...iα(aσ′)0...0 = α(πaσ′′′)0...i+1

Martin Leucker MOVEP, 12/03/12 59/103

Incremental version

Theorem (Incremental Emptiness for Extrapolation)

Let A be a Büchi automaton obtained via a satisfiability check by automata

abstraction satisfying the accuracy of automaton abstraction property with a faithful

abstraction function having the forgettable past property. Then, for all π ∈ Σ∗ and

a ∈ Σ, it holds

L(A(extrapolate(πa))) = L(A(extrapolate(π)extrapolate(a)))

Martin Leucker MOVEP, 12/03/12 60/103

Further logics

Indeed works

◮ LTL with Past

◮ linear-time µ-calculus

◮ RLTL

◮ LTL with integer constraints

Martin Leucker MOVEP, 12/03/12 61/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 62/103

Monitorability

When does anticipation help?

Martin Leucker MOVEP, 12/03/12 63/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

◮ Ugly prefixes
Martin Leucker MOVEP, 12/03/12 64/103

Monitors revisited

Structure of Monitors

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤

Classification of Prefixes of Words

◮ Bad prefixes [Kupferman & Vardi’01]

◮ Good prefixes [Kupferman & Vardi’01]

◮ Ugly prefixes
Martin Leucker MOVEP, 12/03/12 64/103

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

ϕ is non-monitorable after u, if u cannot be extended to a bad oder good

prefix.

Monitorable

ϕ is monitorable if there is no such u.

Martin Leucker MOVEP, 12/03/12 65/103

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

ϕ is non-monitorable after u, if u cannot be extended to a bad oder good

prefix.

Monitorable

ϕ is monitorable if there is no such u.

“?”

bad

“⊥”

ugly

“?”

good

“⊤”

⊤ ⊤ ⊤Martin Leucker MOVEP, 12/03/12 65/103

Monitorable Properties

Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

Monitorable Properties

Safety Properties

Co-Safety Properties

Note

Safety and Co-Safety Properties are monitorable

Martin Leucker MOVEP, 12/03/12 66/103

Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties

◮ comprises safety- and co-safety properties, but

◮ is strictly larger than their union.

Proof

Consider ((p ∨ q)Ur) ∨ Gp

Martin Leucker MOVEP, 12/03/12 67/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 68/103

Fusing model checking and runtime verification

LTL with a predictive semantics

Martin Leucker MOVEP, 12/03/12 69/103

Recall anticipatory LTL semantics

The truth value of a LTL3 formula ϕ wrt. u, denoted by [u |= ϕ], is an element

of B3 defined by

[u |= ϕ] =



















⊤ if ∀σ ∈ Σω : uσ |= ϕ

⊥ if ∀σ ∈ Σω : uσ 6|= ϕ

? otherwise.

Martin Leucker MOVEP, 12/03/12 70/103

Applied to the empty word

Empty word ǫ

[ǫ |= ϕ]
P
= ⊤

iff ∀σ ∈ Σω with ǫσ ∈ P : ǫσ |= ϕ

iff L(P) |= ϕ

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker MOVEP, 12/03/12 71/103

Abstraction

An over-abstraction or and over-approximation of a program P is a program

P̂ such that L(P) ⊆ L(P̂) ⊆ Σω .

Martin Leucker MOVEP, 12/03/12 72/103

Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P̂ be an over-approximation of P . Let u ∈ Σ∗

denote a finite trace. The truth value of u and an LTL3 formula ϕ wrt. P̂ ,

denoted by [u |=
P̂
ϕ], is an element of B3 and defined as follows:

[u |=
P̂
ϕ] =



















⊤ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ |= ϕ

⊥ if ∀σ ∈ Σω with uσ ∈ P̂ : uσ 6|= ϕ

? else

We write LTLP whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker MOVEP, 12/03/12 73/103

Properties of Predictive Semantics

Let P̂ be an over-approximation of a program P over Σ, u ∈ Σ∗, and

ϕ ∈ LTL.

◮ Model checking is more precise than RV with the predictive semantics:

P |= ϕ implies [u |=
P̂
ϕ] ∈ {⊤, ?}

◮ RV has no false negatives: [u |=
P̂
ϕ] = ⊥ implies P 6|= ϕ

◮ The predictive semantics of an LTL formula is more precise than LTL3:

[u |= ϕ] = ⊤ implies [u |=
P̂
ϕ] = ⊤

[u |= ϕ] = ⊥ implies [u |=
P̂
ϕ] = ⊥

The reverse directions are in general not true.

Martin Leucker MOVEP, 12/03/12 74/103

Monitor generation

The procedure for getting [u |=
P̂
ϕ] for a given ϕ and

over-approximation P̂

ϕ, P̂

ϕ Aϕ Bϕ Fϕ B̂ϕ B̃ϕ

¬ϕ A¬ϕ B¬ϕ F¬ϕ B̂¬ϕ B̃¬ϕ

Mϕ

Input Formula NBA P̂×NBA
Emptiness

per state
NFA DFA FSM

Martin Leucker MOVEP, 12/03/12 75/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 76/103

Intermediate Summary

Semantics

◮ completed traces
◮ two valued semantics

◮ non-completed traces
◮ Impartiality

◮ at least three values

◮ Anticipation
◮ finite traces
◮ infinite traces
◮ . . .

◮ monitorability

◮ Prediction

Monitors

◮ left-to-right

◮ time versus space trade-off
◮ rewriting
◮ alternating automata
◮ non-deterministic automata
◮ deterministic automata

Martin Leucker MOVEP, 12/03/12 77/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 78/103

Extensions

LTL is just half of the story

Martin Leucker MOVEP, 12/03/12 79/103

Extensions

LTL with data

◮ J-LO

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

◮ concurrency

Martin Leucker MOVEP, 12/03/12 80/103

Extensions

LTL with data

◮ J-LO

◮ MOP (parameterized LTL)

◮ RV for LTL with integer constraints

Further “rich” approaches

◮ LOLA

◮ Eagle (etc.)

Further dimensions

◮ real-time

◮ concurrency

◮ distribution

Martin Leucker MOVEP, 12/03/12 80/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 81/103

Monitoring Systems/Logging: Overview

monitoring systems

/logging
instru-

mentation

source code

byte code

binary code

logging APIs

trace tools

dedicated

tracing/-

monitoring

hardware

Martin Leucker MOVEP, 12/03/12 82/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 83/103

Monitoring Systems/Logging: Overview

monitoring results/

steering

print

exception

steer

manual

automatically

Martin Leucker MOVEP, 12/03/12 84/103

React!

Runtime Verification

Observe—do not react

Realising dynamic systems

◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

Martin Leucker MOVEP, 12/03/12 85/103

React!

Runtime Verification

Observe—do not react

Realising dynamic systems

◮ self-healing systems

◮ adaptive systems, self-organising systems

◮ . . .

◮ use monitors for observation—then react

Martin Leucker MOVEP, 12/03/12 85/103

jMOP [Rosu et al.]

Java Implementation

Martin Leucker MOVEP, 12/03/12 86/103

Runtime Reflection [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern

Martin Leucker MOVEP, 12/03/12 87/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 88/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 89/103

Diagnosis

Main Ideas

◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base

Martin Leucker MOVEP, 12/03/12 90/103

Diagnosis

Main Ideas

◮ Knowledge base

◮ Knowledge

◮ Explanation of Knowledge with Respect to the Knowledge base

Here

◮ System description

◮ Observations

◮ Diagnosis: Explanation of the Observations with respect to the System

description

Martin Leucker MOVEP, 12/03/12 90/103

System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Martin Leucker MOVEP, 12/03/12 91/103

System Description in First-Order Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Formally

SD = ok(i1) ∧ ¬AB(C1) → l1 = C1(i1)

∧ ok(i2) ∧ ¬AB(C2) → l2 = C2(i2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C3) → o1 = C3(l1, l2)

∧ ok(l1) ∧ ok(l2) ∧ ¬AB(C4) → o2 = C4(l1, l2)

Martin Leucker MOVEP, 12/03/12 91/103

System Description in Propositional Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Martin Leucker MOVEP, 12/03/12 92/103

System Description in Propositional Logic

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Martin Leucker MOVEP, 12/03/12 92/103

Observation

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Observation

(Truth) values for (some of) the propositions involved

Formally: a formula OBS

Observation

¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 93/103

Diagnosis

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Diagnosis

A minimal set of components such that SD ∧ OBS ∧∆ is satisfiable, where ∆

encodes the chosen components.

Martin Leucker MOVEP, 12/03/12 94/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Observations

¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 95/103

Example

Propositional Logic

SD = i1 ∧ ¬C1 → l1

∧ i2 ∧ ¬C2 → l2

∧ l1 ∧ l2 ∧ ¬C3 → o1

∧ l1 ∧ l2 ∧ ¬C4 → o2

Observations

¬o1 ∧ i1 ∧ i2 ∧ o2

CNF

SD = ¬i1 ∨ C1 ∨ l1

∧ ¬i2 ∨ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3 ∨ o1

∧ ¬l1 ∨ ¬l2 ∨ C4 ∨ o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧
∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 96/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses

◮ ∆1 = {C1}

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses

◮ ∆1 = {C1}
◮ ∆2 = {C2}

Martin Leucker MOVEP, 12/03/12 97/103

Example

Example

C1

C2

C3

C4

i1 l1 o1

i2 l2 o2

SD ∧ Observations

SD = C1 ∨ l1

∧ C2 ∨ l2

∧ ¬l1 ∨ ¬l2 ∨ C3

∧ ¬o1 ∧ i1 ∧ i2 ∧ o2

Diagnoses

◮ ∆1 = {C1}
◮ ∆2 = {C2}
◮ ∆3 = {C3}

Martin Leucker MOVEP, 12/03/12 97/103

Outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 98/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors

◮ Monitor reports ⊥ line is false

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

Monitors yield Obervations

We have. . .

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is ? (no assignment)

Omniscent Monitors

A monitor is called omnicscent if its output ⊤ implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors

◮ Monitor reports ⊥ line is false

◮ Monitor reports ? line is ? (no assignment)

◮ Monitor reports ⊤ line is true

Martin Leucker MOVEP, 12/03/12 99/103

Oniscent Monitors

Example

C1 C2
i l o

Martin Leucker MOVEP, 12/03/12 100/103

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Martin Leucker MOVEP, 12/03/12 100/103

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Martin Leucker MOVEP, 12/03/12 100/103

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

Martin Leucker MOVEP, 12/03/12 100/103

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

If additionally l known to be correct, only C2 diagnosed.

Martin Leucker MOVEP, 12/03/12 100/103

Oniscent Monitors

Example

C1 C2
i l o

SD = i ∧ ¬C1 → l

∧ l ∧ ¬C2 → o

SD = ¬i ∨ C1 ∨ l

∧ ¬l ∨ C2 ∨ o

Observation: i ∧ ¬o

SD = C1 ∨ l

∧ ¬l ∨ C2

Diagnoses: C2 or C1

If additionally l known to be correct, only C2 diagnosed.

 notion of omniscent diagnoses

Martin Leucker MOVEP, 12/03/12 100/103

Presentation outline

Runtime Verification

Runtime Verification for LTL

LTL over Finite, Completed Words

LTL over Finite, Non-Completed Words: Impartiality

LTL over Non-Completed Words: Anticipation

LTL over Infinite Words: With Anticipation

Generalisations: LTL with modulo Constraints

Monitorable Properties

LTL with a Predictive Semantics

LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis

Ideas

RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 101/103

Conclusion

Summary

◮ RV for Failure detection
◮ various, multi-valued approaches
◮ various existing systems
◮ does generally identifies failure detection and identification

◮ Diagonis for Failure identification?

Future work

What is the right combination?

Martin Leucker MOVEP, 12/03/12 102/103

That’s it!

Thanks! - Comments?

Martin Leucker MOVEP, 12/03/12 103/103

That’s it!

Thanks! - Comments?

Martin Leucker MOVEP, 12/03/12 103/103

	Runtime Verification
	Runtime Verification for LTL
	LTL over Finite, Completed Words
	LTL over Finite, Non-Completed Words: Impartiality
	LTL over Non-Completed Words: Anticipation
	LTL over Infinite Words: With Anticipation
	Generalisations: LTL with modulo Constraints
	Monitorable Properties
	LTL with a Predictive Semantics
	LTL wrap-up

	Extensions
	Monitoring Systems/Logging
	Steering
	Diagnosis
	Ideas
	RV and Diagnosis

	Conclusion

