umvlkslmr zu Lua:ck
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Technical Talk on
Runtime Verification

Martin Leucker

Institute for Software Engineering
Universitét zu Liibeck

Marseille, Monday 3rd of December 2012

Martin Leucker MOVEP, 12/03/12

isp

1/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker MOVEP, 12/03/12 2/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker MOVEP, 12/03/12 2/103

AND PROGRAMMING LANGUAG ES

N T E F SbeTwaRE enciNEERING iS p
Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Martin Leucker MOVEP, 12/03/12 2/103

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

Martin Leucker MOVEP, 12/03/12

2/103

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

Martin Leucker MOVEP, 12/03/12 2/103

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions
» Simple verification technique

» Complementing

Martin Leucker MOVEP, 12/03/12 2/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing
» Model Checking

Martin Leucker MOVEP, 12/03/12 2/103

Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

Martin Leucker MOVEP, 12/03/12 2/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

» Formal: w € L(p)

Martin Leucker MOVEP, 12/03/12 2/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking

» Specification of System

Martin Leucker MOVEP, 12/03/12 3/103

umvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Model Checking

» Specification of System

> as formula ¢ of linear-time temporal logic (LTL)

Martin Leucker MOVEP, 12/03/12 3/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking

» Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

Martin Leucker MOVEP, 12/03/12 3/103

umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Model Checking

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

Martin Leucker MOVEP, 12/03/12

isp

3/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

> as transition system S with runs £(S)

Martin Leucker MOVEP, 12/03/12

isp

3/103

mvlksmr zu LOBECK
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Model Checkmg

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System

> as transition system S with runs £(S)

» Model Checking Problem:
Do all runs of the system satisfy the specification

Martin Leucker MOVEP, 12/03/12

isp

3/103

mvlksmr zu LOBECK
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Model Checkmg

> Specification of System

> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System
> as transition system S with runs £(S)
» Model Checking Problem:
Do all runs of the system satisfy the specification
> £(5) C L(p)

Martin Leucker MOVEP, 12/03/12

isp

3/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Model Checking versus RV

» Model Checking: infinite words

Martin Leucker MOVEP, 12/03/12 4/103

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words

» Runtime Verification: finite words

Martin Leucker MOVEP, 12/03/12 4/103

umvlkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words
» Runtime Verification: finite words

> yet continuously expanding words

Martin Leucker MOVEP, 12/03/12

isp

4/103

umvlkslmr zu LOBECK |
IN OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

» Model Checking: infinite words
» Runtime Verification: finite words

> yet continuously expanding words

» In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Martin Leucker MOVEP, 12/03/12 4/103

: umvlkslmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Model Checking versus RV

v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

Martin Leucker MOVEP, 12/03/12 4/103

mvlkslmr zu Lua:ck |
TITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £

Model Checking versus RV

v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

v

Runtime Verification: also Black-Box-Systems

Martin Leucker MOVEP, 12/03/12 4/103

isp

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
GES

AND PROGRAMMING LANGUA

Testing

Testing: Input/Output Sequence

» incomplete verification technique

Martin Leucker MOVEP, 12/03/12

5/103

H umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Testing

Testing: Input/Output Sequence
» incomplete verification technique

> test case: finite sequence of input/output actions

Martin Leucker MOVEP, 12/03/12 5/103

AND PROGRAMMING LANGUAGES

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions

» test suite: finite set of test cases

Martin Leucker MOVEP, 12/03/12 5/103

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Martin Leucker MOVEP, 12/03/12 5/103

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Martin Leucker MOVEP, 12/03/12 5/103

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle

> test case: finite sequence of input actions

Martin Leucker MOVEP, 12/03/12 5/103

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions

» test oracle: monitor

Martin Leucker MOVEP, 12/03/12 5/103

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
> test oracle: monitor

> test execution: send test cases, let oracle report violations

Martin Leucker MOVEP, 12/03/12 5/103

mv!ksmr zu LUBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
» test oracle: monitor
> test execution: send test cases, let oracle report violations

» similar to runtime verification

Martin Leucker MOVEP, 12/03/12 5/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Prrl AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual

Martin Leucker MOVEP, 12/03/12 6/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual

» RV monitor from high-level specification (LTL)

Martin Leucker MOVEP, 12/03/12 6/103

isp

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
GES

AND PROGRAMMING LANGUA

Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)

> Testing:
How to find good test suites?

Martin Leucker MOVEP, 12/03/12 6/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)
> Testing:

How to find good test suites?

» Runtime Verification:
How to generate good monitors?

Martin Leucker MOVEP, 12/03/12 6/103

umv:ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
ND PROGRAMMING LANGU

Outline

Runtime Verification

Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up

Extensions

Monitoring Systems/Logging

Steering

Diagnosis
Ideas
RV and Diagnosis

Conclusion
Martin Leucker MOVEP, 12/03/12 7/103

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 8103

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Martin Leucker MOVEP, 12/03/12 9/103

isp

Runtime Verification

Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.

Martin Leucker MOVEP, 12/03/12 9/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Taxonomy

finite non-

comple
finite
infinite

inline

information e
collection evaluation T

integration outline

safety runtime

checking

verification

‘monitoring

offline

behavior

Martin Leucker MOVEP, 12/03/12 10/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints
Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up

Martin Leucker MOVEP, 12/03/12 11/103

£ UNIVERSITAT ZU LUBECK
N

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANG

Runtime Verification for LTL

Observing executions/runs

isp

Martin Leucker

MOVEP, 12/03/12

12/103

£ UNIVERSITAT ZU LUBECK

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE:

Runtime Verification for LTL

Observing executions/runs

isp

Idea

Specify correctness properties in LTL

MOVEP, 12/03/12

12/103

£ UNIVERSITAT ZU LUBECK | S p

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL

Commercial
Specify correctness properties in Regular LTL

Martin Leucker MOVEP, 12/03/12 12/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

w u= true|p |pVelpUp|Xp |
false | splonp|pRo | Xp |
—p

Martin Leucker MOVEP, 12/03/12 13/103

: umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

isp

14/103

: umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

isp

14/103

mvlksmr zu r.ua:clc
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

-p
pUyg
X(pUg)

isp

14/103

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

-p
pUyg
X(pUg)

isp

14/103

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

X(pUg)

isp

14/103

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

-p
pUyg
X(pUg)

< X <

isp

14/103

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics

overw € (247)* = xv

|
{r.q} P p q q

Martin Leucker MOVEP, 12/03/12

Vv

-p
pUyg
X(pUg)

< <L X<

isp

14/103

umv:ksmr zu LOBECK
OF SOFTWARE ENGINEERING
ND PROGRAMMING LANGU

Linear-time Temporal Logic (LTL)

Semantics
overw € (247)* = xv

|
{r.q} P p q q

Abbreviation
Fo = truellp Gy = - F-p

Martin Leucker MOVEP, 12/03/12

Vv

-p
pUyg
X(pUg)

<. X <

isp

14/103

umv:ksmr zu r.ue:clc |
OF SOFTWARE ENGINEERING
ND PROCRAMMING LANCU

Llnear-tlme Temporal Logic (LTL)

Semantics
overw € (247)¥ = % P v
P X
I > = pUg
{p.a} p p q q X(pUgq)

Abbreviation
Fo = truellp Gy = - F-p

Example

G (critic1 A criticy), G(—alive — Xalive)

Martin Leucker MOVEP, 12/03/12 14/103

zu LUEECK |
OF WARE ENGINEERING

CRAMMING LANGU

LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = apa; ... € ¥“, where
wi =aidi4+1 ...
w = true
wk=p if peap
w = —p if pd&ao
w = - if notwkE ¢
wEeVYy if wlEkyporwkEy
wEeANyY if wkEeandw =y
w = Xp if w'Eep
w = X if w'Ee
wkEeU if thereiskwith0 <k < |w|: wk =1
and forall I with 0 < I < k' |=
wk=@Ry if forallkwith0 <k < |w|: (w* =
or thereis I with 0 < I < kw' |= ¢)

Martin Leucker MOVEP, 12/03/12 15/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

Martin Leucker MOVEP, 12/03/12 16/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic
“Syntactic Sugar for LTL” [Bauer, L., Streit@l CFEM’06]

Martin Leucker MOVEP, 12/03/12 16/103

Z UNIVERSITAT ZU LUBECK
5 INSTITUT

Be AND PROGRAMMING LANGUAGES
SALT — http://www.isp.uni-luebeck.de/salt
8e0e SALT - Smart Assertion Language for Temporal Logic | ISP - Institute for Software Engineering and Programming Languages
[» ||+ isphup:/ /www.isp.uni-luebeck de/salt ¢ J(Q- Google

Apple Yahoo! Google Maps YouTube Wikipedia News(1257) T Beliebt™ Martin Leucker Leo

Search MY ACCOUNT IMPRESS

UNIVERSITY OF LUBECK

INSTITUTE FOR SOFTWARE ENGINEERING S
AND PROGRAMMING LANGUAGES

NEWS RESEARCH TEACHING STAFF CONTACT

Projects

SALT - Smart Assertion Language for Temporal Logic

Goal

Do you want to specify the behavior of your program in a rigorously yet comfortable manner?
Do you see the benefits of temporal specifications but are bothered by the awkward farmalisms available?
Do you want to use

= the power of a Model Checkerto improve the quality of your systems or
® the nowerful nintime reflection annrnach far hila huntina and alimination

Martin Leucker MOVEP, 12/03/12 17/103

http://www.isp.uni-luebeck.de/salt

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification for LTL

Idea
Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

p = true|p |eVoe|oUep|Xe |
false | =p | oAp | pRo | Xp |
P

Martin Leucker MOVEP, 12/03/12 18/103

T R, isp
Truth Domain

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Martin Leucker MOVEP, 12/03/12 19/103

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Truth Domains (cont.)

Lattice (cont.)

> A lattice is distributive, iff x M (y U z) = (x My) U (x M z), and, dually,
xU(yNz)=(xUy) N (xUz).

> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker MOVEP, 12/03/12 20/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . .. € £°

Boolean constants Boolean combinations

[w |= true] ¢ =
[w |= false] o

atomic propositions

[w |= P]Q = {I

next X/weak next X TBD

until/release
wi=eUdle

© R

Martin Leucker

T = —ele
L [wE=eVviyle
Wl e Avle
ifp € ag -
ity ¢ g = —rle

isp

[wk=ele

[whEelegUwi=vle
[w=ele Nwi=Yle

- |

T
L

ifp & ag
ifp € ag

T thereisak, 0 < k < \wl:[wk = ¥]e = T and

TBD else
= (- U-p)

MOVEP, 12/03/12

= forall Iwith0 < I < k: [0l = @] = T

21/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL
LTL over Finite, Completed Words

Martin Leucker MOVEP, 12/03/12 22/103

zu LUEECK |S
OF WARE ENGINEERING

CRAMMING LANGU

LTL on finite words

Application area: Specify properties of finite word

o

Martin Leucker MOVEP, 12/03/12 23/103

mv!ksmr zu LOBECK
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a9 . .

next
wexg, = JWEeEr
1
weak next
wexdr = {4
T

Martin Leucker MOVEP, 12/03/12

isp

y_1 €D

iful # ¢

otherwise

iful e

otherwise

24/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker MOVEP, 12/03/12

isp

25/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline
Runtime Verification for LTL

LTL over Finite, Non-Completed Words: Impartiality

Martin Leucker MOVEP, 12/03/12 26/103

NIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

s

o = =

Martin Leucker MOVEP, 12/03/12 27/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

Martin Leucker MOVEP, 12/03/12 28/103

: umvlkslmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

> be a man: stick to your word

Martin Leucker MOVEP, 12/03/12 28/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)
Semantics of FLTL formulae overaword u = ag...a4,_1 € X*

next

' gle iful #e

[ufE Xelr =
17 otherwise

weak next

W' el ifu' #e
TP otherwise

[= Xl

Martin Leucker MOVEP, 12/03/12 29/103

UNIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitoring LTL on finite but expanding words

Left-to-right!

Martin Leucker MOVEP, 12/03/12 30/103

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
> evaluate atomic propositions
> evaluate next-formulas
» that’s it thanks to
pUPp =9V (pAXpU)
and

PRY=¢A(pVXpR)

» and remember what to evaluate for the next letter

Martin Leucker MOVEP, 12/03/12 31/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENG
AND PROGRAMMING LANGUAG E

INEERING
s

isp

Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
-

PV

pAY

pUy
® R P

X

0 0 o o

(LR TR

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (valPhi, -phiRew)

let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a

in (valPhi Il valPsi,phiRew A psiRew)
evalFLTL4d ¥V (¢ AX(p UY)) a
evalFLTL4 ¥ A (p VX(p R)) a

(L7, o)

(TP,)

MOVEP, 12/03/12 32/103

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitoring LTL on finite but expanding words

Automata-theoretic approach
» Synthesize automaton

» Monitoring = stepping through automaton

Martin Leucker MOVEP, 12/03/12 33/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENG
ND PROGRAMMING LANGUAGE

Rewriting vs. automata

INEERING
s

isp

Rewriting function defines transition function

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
—p

eV

PAY

e U
R P
X

X

Q9 0 0 0

v oo op W

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (Ggigﬁz,ﬁphiRew)

let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a

in (valPhi I valPsi,phiRew A psiRew)

= evalFLTL4 ¥ V (p AX(p U)) a

evalFLTL4 ¥ A (¢ VX(p R)) a
(L7, p)
(T, 9)

MOVEP, 12/03/12 34/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Automata-theoretic approach

The roadmap

» alternating Mealy machines

Martin Leucker MOVEP, 12/03/12 35/103

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Automata-theoretic approach

The roadmap
» alternating Mealy machines

» Moore machines

Martin Leucker MOVEP, 12/03/12 35/103

umvlkslmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines

> alternating machines

Martin Leucker MOVEP, 12/03/12 35/103

umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Automata-theoretlc approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines

» non-deterministic machines

Martin Leucker MOVEP, 12/03/12 35/103

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines
» non-deterministic machines

» deterministic machines

Martin Leucker MOVEP, 12/03/12 35/103

umv:ksmr ZU LOBECK
IN

TE OF SOFTWARE ENGINEERING

AND PROGRAMMING LANGU

Automata-theoretlc approach

The roadmap

>

>

>

Martin Leucker

alternating Mealy machines
Moore machines
alternating machines
non-deterministic machines
deterministic machines

state sequence for an input word

MOVEP, 12/03/12

isp

35/103

: umvlkslmr zu LOBECK | S
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Martin Leucker MOVEP, 12/03/12 36/103

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Supporting alternatlng finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Convention
Understand § : Q x & — BT (T' x Q) asa function§ : Q x ¥ — T' x BT(Q)

Martin Leucker MOVEP, 12/03/12 36/103

umv!ksmr zu LUEECK | Sp

ARE ENGINEERING
AND PROCRAMMING LANCU

Supportlng alternatlng finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q, 3, T, g0, 0) on a finite word
u=dg...a,—1 € LT is a sequence t (o) y Gk oy 1) ek
that
> to = qgo and
> (ti,bio1) = (ti1,8i-1)
where § is inductively defined as follows
> 8(g,a) = 8(g,0),
> 3(qV q',0) = (g, @) US(q',), (g, 0)]2 v 5(q',)), and
> (g Ad',0) = (@@ N 8(q,), 3(q,0)]2 A 5(a',a)12)
The output of the run is b,_;.
37/103

Martin Leucker MOVEP, 12/03/12

UN

lvsksmr zu r.ue:clc
ARE ENGINEERING
AND PROCRAMMING LANCU

isp

Transitlon functlon of an alternating Mealy machine

Transition function &§ : Q x ¥ — B™(I" x Q)

Martin Leucker

0y (true, a)
04 (false, a)

5 (p,a)

(o Vi,a)
(¢ N1, a)
(¢ Uh,a)

5i(p R 1,a)

(T, true)
(L, false)
(

53 (p,a) v 04(¢), a)
(s,) A\ 63(¢, a)

5i(v (e A X(p U tp)),a)
33 (1,a) V (33, a) A (p U 9))
G A (o VX(pR)),0)
33(1,a) A (33, a) V (p R 9))
(L7,)

(T%,)

MOVEP, 12/03/12

38/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL over Non-Completed Words: Anticipation

Martin Leucker MOVEP, 12/03/12 39/103

£ UNIVERSITAT ZU LUBECK |
s INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Anticipatory Semantics

Consider possible extensions of the non-completed word

=

Martin Leucker MOVEP, 12/03/12 40/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL over Infinite Words: With Anticipation

Martin Leucker MOVEP, 12/03/12 41/103

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

Martin Leucker MOVEP, 12/03/12 42/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

3-valued semantics for LTL over finite words
T ifVoeX¥:uo k=g
Ul = 1 ifVoeX¥:uo o

7?7 else

Martin Leucker MOVEP, 12/03/12 42/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Martin Leucker MOVEP, 12/03/12 43/103

: umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse

Martin Leucker MOVEP, 12/03/12 43/103

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

Martin Leucker

E XXXfalse
E XXfalse

MOVEP, 12/03/12

isp

43/103

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse
a E XXfalse
ar = Xfalse

Martin Leucker MOVEP, 12/03/12 43/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E XXXfalse
a E XXfalse
ar = Xfalse
aaa = false
T ifVo € % : e0 = XXXfalse
[e E XXXfalse] = ¢ 1 ifVo € 2% : eo = XXXfalse

7 else
Martin Leucker MOVEP, 12/03/12 43/103

umv!ksmr zu LUEECK
OF SOFTWARE ENGINEERING
CRARMING LANGUAG 8

Biichi automata (BA)

Martin Leucker MOVEP, 12/03/12 44/103

umv:ksmr zu r.ue:clc |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Buchl automata (BA)

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Blichi automata (BA)

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK
TE SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

ab

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
s AND PROGRAMMING LANGUAGES

Biichi automata (BA)

ab

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK i
TE OF SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

aba

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Blichi automata (BA)

aba

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK i
TE OF SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

abab

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK i
TE OF SOFTWARE ENGINEERING
Rt A CRAMMING LANCUAGES

Biichi automata (BA)

abab...

Martin Leucker MOVEP, 12/03/12 44/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Biichi automata (BA)

abab...
(ab)“ € L(A)

Martin Leucker MOVEP, 12/03/12 44/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker MOVEP, 12/03/12 44/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

Emptiness test:

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker MOVEP, 12/03/12 44/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

Emptiness test: SCCC, Tarjan

a,b

&
W‘/
Q

abab...
(ab)* € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker MOVEP, 12/03/12 44/103

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

LTL to BA

[Vardi & Wolper '86]

» Translation of an LTL formula ¢ into Biichi automata A, with

L(Ay) = L(p)

» Complexity: Exponential in the length of ¢

Martin Leucker MOVEP, 12/03/12 45/103

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitor construction — Idea |

T ifVoeX¥ :uokEp
MEel=9 L ifVoeXZ¥:uokyp

7 else

Martin Leucker MOVEP, 12/03/12

isp

46/103

mv!ksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitor construction — Idea |

T ifVoeX¥ :uokEp
uEwl=¢ L ifVoeX uoltp

7 else

Martin Leucker MOVEP, 12/03/12

isp

46/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitor construction — Idea |

T ifVoeX¥ :uokEp

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T
Po
a

O}

b

Martin Leucker MOVEP, 12/03/12 46/103

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Monitor construction — Idea |

T ifVoeX¥:uc kg

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T

Martin Leucker MOVEP, 12/03/12 46/103

umv:ksmr zu r.ue:clc | Sp
INSTITUTE OF SOFTWARE ENGINEEF

AND PROCRAMMING LANCU

'5.g1s%"

monitor construction — Idea Il

Martin Leucker MOVEP, 12/03/12 47/103

UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
siew® AND PROGRAMMING LANGUAGES

monitor construction — Idea Il

Martin Leucker MOVEP, 12/03/12 47/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

monitor construction — Idea Il

#1

Martin Leucker MOVEP, 12/03/12 47/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

monitor construction — Idea Il

<
W‘/
A

NFA
Fo: Qp — {T, L} Emptiness per state

Martin Leucker MOVEP, 12/03/12 47/103

mvlkslmr zu Lua:cx
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

¢ —> BA? —> F? —» NFA?

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?

Martin Leucker MOVEP, 12/03/12

isp

48/103

mvlkslmr zu Lua:ck
T ARE ENGINEERING
AND PROCRAMMING LANCUAG £8

The complete construction

The construction
¢ —= BA® —> F¥ — NFA”

-

Lemma

-
ME@l =19 L ifu¢ L(NFA¥)

?

Martin Leucker MOVEP, 12/03/12

isp

48/103

mvlkslmr zu Lua:ck
T OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

The complete construction

The construction
¢ —= BA® —> F¥ — NFA”

~% —>BA™¥ — F ¢ —~ NFA™¥

Lemma
T ifu¢ L(NFA™¥)
M@l =4 L ifug¢ CL(NFA®)

7 else

Martin Leucker MOVEP, 12/03/12

isp

48/103

valkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

_— P (I %}
¥ BA F¥ — NFA

80\

9 —»BA™¥ — F ¥ -~ NFA ™%

Martin Leucker MOVEP, 12/03/12

isp

48/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

The complete construction

The construction

— > BAY —» F¥ —» ® @
-9 —=BA F¥ —= NFA* —~ DFA

80\

—Y —>BA7Y — F ¥ = NFA™¥ -~ DFA ¥

Martin Leucker MOVEP, 12/03/12 48/103

valkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

_— P [P 7}

. P ¥ BA F NFA DFA @

—
—¢ —>BA7Y — F ¥ = NFA™¥ ~DFA™¥

Martin Leucker MOVEP, 12/03/12

isp

48/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

— — — > @

@ __— ¥ BA¥ F? NFA DFA i:@

-
9 —>BA™¥Y — F7%¢ > NFA7¥ -~ DFA™%

Martin Leucker MOVEP, 12/03/12 49/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

¥ — BA

\—* F¥ — NFA” — DFA® @
7 — F¥ -~ NFA ¥ ~ DFA™¥

Martin Leucker MOVEP, 12/03/12 49/103

£ UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
vt AND PROGRAMMING LANGUAG ES

Complexity

The construction

Martin Leucker MOVEP, 12/03/12 49/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Complexity

The construction

Complexity

Martin Leucker MOVEP, 12/03/12 49/103

mvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Complexity

The construction

XFA? - DFAX i@
‘A™% » DFAF

Complexity

|M‘ S 22|<¢>

Optimal result!
FSM can be minimised (Myhill-Nerode)

Martin Leucker MOVEP, 12/03/12 49/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

On-the-fly Construction

The construction

L RAP 4y TP ® 7
R BA F FA® — DFA
TN = BA™ — F ¥ =WFA™ - DFA™¥ @

Martin Leucker MOVEP, 12/03/12 50/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

Generalisations: LTL with modulo Constraints

Martin Leucker MOVEP, 12/03/12

isp

51/103

mvlkslmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past

Martin Leucker MOVEP, 12/03/12 52/103

mvlkslmr zu Lua:ck | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past

» linear-time p-calculus

Martin Leucker MOVEP, 12/03/12 52/103

mvlkslmr zu Lua:ck | S
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus

» RLTL

Martin Leucker MOVEP, 12/03/12 52/103

mvlksmr zu LOBECK
T OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus
» RLTL

» LTL with integer constraints

G(fopen, — ((x = Xx) U fclosey))

Martin Leucker MOVEP, 12/03/12

isp

52/103

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Linear-time Loglc

Definition (Linear-time Logic)

A linear-time logic L defines
> aset F; of L-formulae and

> a two-valued semantics |=;.

Every L-formula ¢ € F; has an associated and possibly infinite alphabet .

Moreover, for every formula ¢ € F; and every word o € X, we require
(L1) th e F; : A F;.
(L2) Vo e Xy : (oL © oL y).

Martin Leucker MOVEP, 12/03/12

53/103

mvlksmr zu LOBECK | S
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Anticipation Semantlcs

Definition (Anticipation Semantics)

Let L be a linear-time logic. We define the anticipation semantics [= ¢]; of
an L-formula ¢ € F; and a finite word = € £, with

T ifVoeXy : nofro
[r =], = 1 ifVoeXy : mo e

? otherwise

Martin Leucker MOVEP, 12/03/12 54/103

mv!ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Evaluation using deC|de

decide
T ifdecide o (7) = L
[T, =¢ L ifdecide,(n) =1
? otherwise

where decide,, () is defined to return T for ¢ € F; and 7 € X, if
do € 3 : 7o =L ¢ holds, and L otherwise.

Martin Leucker MOVEP, 12/03/12 55/103

umv:ksmr zu LOBECK |
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

The automata theoretlc approach to SAT

Definition (Satisfiability Check by Automata Abstraction)

Given a linear-time logic L with its formulae F;, the satisfiability check by
automata abstraction proceeds as follows. For formula ¢ € Fp,

1. define alphabet abstraction ¥, — ¥, finite, abstract alphabet
2. define a word abstraction a(-) : 3% — %

3. define an automaton construction ¢ + w-automaton A, over %, such
that for all & € £ it holds

L(Ap)iff Jo € 3¥ : 6 =a(o)and o = ¢

Then
¢ satisfiable iff £L(A,) # 0 iff non-empty(A,)

Martin Leucker MOVEP, 12/03/12 56/103

umvlksmr zu r.ua:clc | S
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

From finite to |nf|n|te

Definition (extrapolate)

extrapolate({a 7o) i+ 1=|n|,0€ ZW}

Definition (Accuracy of Abstract Automata)

accuracy of abstract automata property holds, if, for all = € 3%,
> (3o : mo L) = (3736 : 7o € L(A,)) with T € extrapolate(r),
» (36 : 75 € L(A,)) = (Fndo : wo =L) with T € extrapolate(r).

Martin Leucker MOVEP, 12/03/12

57/103

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Non-mcremental version

Theorem (Correctness of decide)

Given a satisfiability check by automata abstraction for a linear-time logic L
satisfying the accuracy of automata property, we have

decide(w) = non-empty U (g, 7)

q€Qp, 7 €extrapolate ()

Martin Leucker MOVEP, 12/03/12 58/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Faithful abstraction

Definition (Forgettable Past and Faithful Abstraction)

Given « of a satisfiability check by automata abstraction. We say that

> a satisfies the forgettable past property, iff

)i+1,..i+1 .0

a(mao = a(ao)”

forallm € X%, |r| =i+ 1,a € X, and o € X*.
> «is called faithful, iff forallw € %, |x| =i+ 1,a € &, 0,0’ € X for

which there is some 0" € ¥ with a(r0)*a(ac’)" " = a(c”)* !
there also exists a ¢’’’ € ¢ with
a(ﬂ,a)o la(ao_l)O...O _ CE(TF[ZO'/”)OMH—l

Martin Leucker MOVEP, 12/03/12 59/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Incremental version

Theorem (Incremental Emptiness for Extrapolation)

Let A be a Biichi automaton obtained via a satisfiability check by automata
abstraction satisfying the accuracy of automaton abstraction property with a faithful
abstraction function having the forgettable past property. Then, for all T € ¥* and
a € X, it holds

L(A(extrapolate(na))) = L(.A(extrapolate(r)extrapolate(a)))

Martin Leucker MOVEP, 12/03/12 60/103

umvlkslmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Further logics

Indeed works
» LTL with Past

» linear-time pu-calculus
» RLTL

» LTL with integer constraints

Martin Leucker MOVEP, 12/03/12

isp

61/103

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

Monitorable Properties

Martin Leucker MOVEP, 12/03/12

isp

62/103

£ UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
vt AND PROGRAMMING LANGUAG ES

Monitorability

When does anticipation help?

Martin Leucker MOVEP, 12/03/12 63/103

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors revisited

Structure of Monitors

NG

Martin Leucker MOVEP, 12/03/12 64/103

mv!ksmr zu LOBECK
TIT OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors reV|S|ted

Structure of Monitors

Classification of Prefixes of Words

» Bad prefixes

Martin Leucker

MOVEP, 12/03/12

isp

uopn

[Kupferman & Vardi'01]

64/103

mv!ksmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors reV|S|ted

Structure of Monitors

uou

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]

Martin Leucker MOVEP, 12/03/12 64/103

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors revisited

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]

Martin Leucker MOVEP, 12/03/12 64/103

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]

Martin Leucker MOVEP, 12/03/12 64/103

: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes

Martin Leucker MOVEP, 12/03/12 64/103

mvlksmr zu r.ua:clc | S
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes

Martin Leucker MOVEP, 12/03/12 64/103

mvlkslmr zu Lua:ck |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Monitorable

Non-Monitorable [Pnueli & Zaks’07]

 is non-monitorable after 1, if u cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.

Martin Leucker MOVEP, 12/03/12 65/103

mv!ntsmr ZU LOBECK, | S
TE OF ARE ENGINEERING
AND PROGRAMMING LANGL

Monitorable

Non-Monitorable [Pnueli & Zaks’'07]

 is non-monitorable after 1, if # cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.

Martin Leucker MOVEP, 12/03/12 65/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

5 UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Martin Leucker MOVEP, 12/03/12 66/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

A\

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Co-Safety Properties

Martin Leucker MOVEP, 12/03/12 66/103

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitorable Properties

Safety Properties

Co-Safety Properties

N

Note
Safety and Co-Safety Properties are monitorable

Martin Leucker MOVEP, 12/03/12

isp

66/103

mvlkslmr zu Lua:ck |
TITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £

Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties
» comprises safety- and co-safety properties, but

> is strictly larger than their union.

Proof
Consider ((p v q)Ur) V Gp

Martin Leucker MOVEP, 12/03/12 67/103

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Martin Leucker MOVEP, 12/03/12

isp

68/103

£ UNIVERSITAT ZU LUBECK |
s INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Fusing model checking and runtime verification

LTL with a predictive semantics

Martin Leucker MOVEP, 12/03/12 69/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Recall anticipatory LTL semantics

The truth value of a LTLs formula ¢ wrt. 1, denoted by [u = ¢], is an element
of B3 defined by

T ifVoeX¥ uok=p
uFE o] = 1 ifVYoeX¥ uo o

7 otherwise.

Martin Leucker MOVEP, 12/03/12 70/103

mvlksmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Applied to the empty word

Empty word e

e = ‘P]P =
iff VoeX“withec e P:eoc=op
ifft L(P)E=ey

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker MOVEP, 12/03/12 71/103

UNIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Abstraction

An over-abstraction or and over-approximation of a program P is a program
P such that £(P) C L(P) C =¢.

Martin Leucker MOVEP, 12/03/12 72/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P be an over-approximation of P. Let u € ¥*
denote a finite trace. The truth value of u and an LTL; formula ¢ wrt. P,
denoted by [u =5 ¢], is an element of B3 and defined as follows:
T ifVo € ¥ withuo € P:uo = ¢
MlEpel=4 L ifVoeX¥withuceP:uo o
? else

We write LTLp whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker MOVEP, 12/03/12 73/103

mvlksmr zu r.ua:clc |
INSTITUTE OF SOFTWARE ENCINEERING
AND PROGRAMMING LANGU

Properties of Predlctlve Semantics

Let P be an over-approximation of a program P over ¥, u € %*, and
¢ € LTL.

» Model checking is more precise than RV with the predictive semantics:

P | ¢ implies [u =5 ¢] € {T,7}

» RV has no false negatives: [u =5 ¢] = L implies P [~ ¢

> The predictive semantics of an LTL formula is more precise than LTLs:

ME@ =T implies [ulFEpe@l=T
ME@ =1 implies [ufpepl =1

The reverse directions are in general not true.

Martin Leucker MOVEP, 12/03/12 74/103

: umvlkslmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE

Monitor generation

The procedure for getting [u =5] for a given ¢ and
over-approximation P
(=)

Martin Leucker MOVEP, 12/03/12 75/103

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 76103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Intermediate Summary

Semantics

> completed traces
> two valued semantics

» non-completed traces
> Impartiality
> at least three values
> Anticipation
> finite traces

> infinite traces
>

> monitorability

> Prediction

Martin Leucker

isp

Monitors
> left-to-right
> time versus space trade-off
> rewriting
alternating automata

non-deterministic automata
deterministic automata

vvYyyvw

MOVEP, 12/03/12

771103

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints
Monitorable Properties

ooy,

LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 78103

UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Extensions

LTL is just half of the story

Martin Leucker MOVEP, 12/03/12 79/103

i,
e

5 -
H .
H P S UNIVERSITAT ZU LOBECK.
eX 53 INSTITUTE OF SOFTWARE ENGINEERING I
©15.gys%" AND PROGRAMMING LANGUAGES

» J-LO

5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
ES

AND PROGRAMMING LANGUAG

Extensions
LTL with data

» J-LO
» MOP (parameterized LTL)

Martin Leucker

MOVEP, 12/03/12

isp

80/103

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Martin Leucker MOVEP, 12/03/12 80/103

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Martin Leucker MOVEP, 12/03/12 80/103

mvlkslmr zu Lua:ck

Extensmns
LTL with data
» J-LO

» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

Martin Leucker MOVEP, 12/03/12

isp

80/103

mvlksmr zu Lua:ck
IN OFTWARE ENGINEERING
AND PROGRAMMING LANGU

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Martin Leucker MOVEP, 12/03/12

isp

80/103

mvlksmr zu Lua:ck
IN OFTWARE ENGINEERING
AND PROGRAMMING LANGU

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Martin Leucker MOVEP, 12/03/12

isp

80/103

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)

» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time

Martin Leucker MOVEP, 12/03/12

isp

80/103

mv!ksmr zu LOBECK
OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time

> concurrency

Martin Leucker MOVEP, 12/03/12

isp

80/103

NIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AGES

AND PROGRAMMING LANGU

Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)

» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time
> concurrency

» distribution

Martin Leucker MOVEP, 12/03/12

isp

80/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Monitoring Systems/Logging

Martin Leucker MOVEP, 12/03/12 81/103

UNIVERSITAT Z
NSTITUT

u

UTE OF S
AND PROGRAMMING LANGU.

LOBECK
F SOFTWARE ER

INEERING
s

onitoring Systems/Logging: Overview

Martin Leucker

trace tools

tracing /-
monitoring
hardware

/logging

MOVEP, 12/03/12

source code

instru-
! byte code
mentation

binary

isp

82/103

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 83103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
s

AND P RAMMING LANGUAGE

Monitoring Systems/Logging: Overview

exception

monitoring results/

steering

print

Martin Leucker MOVEP, 12/03/12

automatically

manual

isp

84/103

: umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

React!

Runtime Verification

Observe—do not react

Realising dynamic systems
> self-healing systems
» adaptive systems, self-organising systems

> ...

Martin Leucker MOVEP, 12/03/12 85/103

umvlkslmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Runtime Verification

Observe—do not react

Realising dynamic systems
> self-healing systems
» adaptive systems, self-organising systems
> ...

» use monitors for observation—then react

Martin Leucker MOVEP, 12/03/12 85/103

NIVE!!SH‘AI' zu luEECK
£ isp

OFTWARE ENGINEERING
AND PROGRAMMING LANGL

jMOP [Rosu et aI.]

Java Implementation

class Resource {
/*@
Whond — < scope = class
How _,,—7]{.ogic = PTLTL
Event authenticate: end(exec (*
k;y,i -authenticate()));
Event use: begin(exec(* access()));
Formula : use -> <*> authenticate
}
“NJ* f._(v1olatlon Handler {
@this.authenticate() ;

}
@x/
void authenticate() {...}
void access() {...}
}

Martin Leucker MOVEP, 12/03/12

86/103

mv!ksmr zu LUBECK
TIT OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Runtime Reflectlon [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern

Mitigation

i

Diagnosis

Safety-Critical |
System

Monitoring

i |

Logging

Martin Leucker MOVEP, 12/03/12

isp

87/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Presentation outline

Diagnosis
Ideas
RV and Diagnosis

Martin Leucker MOVEP, 12/03/12 88/103

Bt 'a

‘ UNIVERSITAT ZU LUBECK I S
H INSTITUTE OF SOFTWARE ENGINEERING.
O, AND PROGRAMMING LANGUAG ES

Coutine
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 89103

umvlksmr zu Lua:ck |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Diagnosis

Main Ideas
» Knowledge base

» Knowledge
» Explanation of Knowledge with Respect to the Knowledge base

Martin Leucker MOVEP, 12/03/12 90/103

isp

Diagnosis

Main Ideas
» Knowledge base

» Knowledge
» Explanation of Knowledge with Respect to the Knowledge base

Here

» System description
» Observations

» Diagnosis: Explanation of the Observations with respect to the System
description

Martin Leucker MOVEP, 12/03/12 90/103

UNIVERSITAT ZU LOBECK

INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

System Description in First-Order Logic

Example

Martin Leucker

i I 01
— C1 C; —
iz lz 02
— C Cy —

MOVEP, 12/03/12

isp

91/103

UNIVERSITAT ZU r.ue:clc |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCU

System Descrlptlon in First-Order Logic

Example
e G
1 I 02
— Cz C4 |
Formally
SD = Ok(ll) —|AB(C1) — ll E C1 (11)
Ok(lz) N —\AB(Cz) — b = Cz(lz)
Ok(ll) AN Ok(2) AN —|AB(C3) — 01 = C3(11, lz)
Ok(ll) N Ok(2) —\AB(C4) — 02 = C4(l1, lz)

Martin Leucker MOVEP, 12/03/12 91/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

System Description in Propositional Logic

Example
15 L 01
C1 C; —
iz]2 02
— Cy
Martin Leucker MOVEP, 12/03/12

isp

92/103

: umvlksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

System Descrlptlon in Propositional Logic

Example
i L 01
- G G —
i I 02
—| C Cy
Propositional Logic
SD = nAN-Ci =1L

AN B AN-C— 1

LALA-Cs— 01

LANbLAN—-Cy— 0

Martin Leucker MOVEP, 12/03/12

isp

92/103

umv:ksmr ZU LOBECK
IN TE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Cs

01

Observation
Example
11 Cl
12 C2
Observation

02

(Truth) values for (some of) the propositions involved

Formally: a formula OBS

Observation
—01 A i1 A A0

Martin Leucker

MOVEP, 12/03/12

93/103

umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Diagnosis
Example
i I 01
— Cl C3 s
1 I 02
— C Cy
Diagnosis

A minimal set of components such that SD A OBS A A is satisfiable, where A
encodes the chosen components.

Martin Leucker MOVEP, 12/03/12

94/103

: umvlkslmr ZU LOBECK | S
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGE

Example
Example

1 L 01

Cl C3 —>
1 I 02
— C Cs —

Propositional Logic
SD = 1 A=Ci =1 Observations
ip N=Cp — I =01 N1 ANipg A 03

hALbA-Cs— 01

LhANLA—-Cy— o0
Martin Leucker MOVEP, 12/03/12 95/103

: umvlksmr ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Example
Propositional Logic
SD = it A=C1 — Observations
b A=C— b —01 AN ip A2 A 02

hANLA-=Cs— 0
LhANlb AN=Cs— 0

SD A Observations

CNF
. SD = CiVh
SD = -i1VCi V1L
AN GV
-, VCy Vi
AN =L V=l VG
=l V=l VCsVop
A
=l V-l VCy Vo ; .
AN 01 AN1g AN1pa A\ 02

Martin Leucker MOVEP, 12/03/12 96/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

isp

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
CVih
AN =l Vb VG
A =01 ANip Aip A0z

Martin Leucker MOVEP, 12/03/12

97/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

isp

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
CVih
AN =l Vb VG
A =01 ANip Aip A0z

Martin Leucker MOVEP, 12/03/12

97/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

isp

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
GV
AN =l Vb VG
A =01 AN Aip A0z

Martin Leucker MOVEP, 12/03/12

97/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

isp

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
GV
AN =l Vb VG
A =01 AN Aip A0z

Martin Leucker MOVEP, 12/03/12

97/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
GV
AN =l Vb VG
A —01 ANip Aip A0z

Martin Leucker MOVEP, 12/03/12 97/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Example
Example
i I 01
— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
C Vi
A =l Vb VG
A —01 ANip Aip A0z

Martin Leucker MOVEP, 12/03/12 97/103

Z UNIVERSITAT ZU LUBECK |
1 INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Example
Example
ile P G >
153 C2 lz C4 02
SD A Observations
Diagnoses
SD = Ci VI
1 1 > A = {C1}
Cy VI

A V=l VG
A =01 ANiiL AN Aoy

Martin Leucker MOVEP, 12/03/12 97/103

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Example
Example
ile P G >
153 C2 lz C4 02
SD A Observations
Diagnoses
SD = Ci VI
c] 11 s Se=ial
%
2 V2 > Ar = {C2}

A V=l VG
A =01 ANiiL AN Aoy

Martin Leucker MOVEP, 12/03/12 97/103

: umvlkslmr ZU LOBECK |
TITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Example
Example
ile P G >
153 C2 lz C4 02
SD A Observations
Diagnoses
SD = Ci VI
c] 11 s Se=ial
%
2 V2 > Ar = {C2}

A V=l VG
)) > A3 =] {C3}
AN 01 AN1g ANl A\ 02

Martin Leucker MOVEP, 12/03/12 97/103

Bt 'a

‘ UNIVERSITAT ZU LUBECK I S
H INSTITUTE OF SOFTWARE ENGINEERING.
O, AND PROGRAMMING LANGUAG ES

Coutine
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion <O «Fr «Er«Er E DAC
. MartinLeucker ~ MOVER12/0312 98103

£ UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
vt AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false

Martin Leucker MOVEP, 12/03/12 99/103

umvlkslmr zu Lua:ck |
IN OF SOFTWARE ENGINEERING
AND PROCRAMMING LANCUAG £8

Monitors yield Obervations
We have. ..

» Monitor reports L ~ line is false

> Monitor reports 7 ~» line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Omniscent Monitors
A monitor is called omnicscent if its output T implies that the results on the
monitored output are indeed correct.

Martin Leucker MOVEP, 12/03/12 99/103

isp

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Omniscent Monitors
A monitor is called omnicscent if its output T implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
> Monitor reports L ~ line is false

Martin Leucker MOVEP, 12/03/12 99/103

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Omniscent Monitors
A monitor is called omnicscent if its output T implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
> Monitor reports L ~ line is false

> Monitor reports 7 ~» line is ? (no assignment)

Martin Leucker MOVEP, 12/03/12 99/103

NIVERSITAT ZU LUBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors yield Obervations

We have. ..

» Monitor reports L ~ line is false
> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~ line is ? (no assignment)

Omniscent Monitors
A monitor is called omnicscent if its output T implies that the results on the

monitored output are indeed correct.

For Omniscent Monitors
> Monitor reports L ~ line is false

> Monitor reports 7 ~» line is ? (no assignment)

> Monitor reports T ~- line is true

Martin Leucker MOVEP, 12/03/12 99/103

UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Oniscent Monitors

Example

Martin Leucker

Ci

MOVEP, 12/03/12

C

isp

100/103

umvlkslmr zu Lua:ck
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Oniscent Monitors

Example

isp

Ci

SD = iN—Cy —1
A IAN=C, =0

Martin Leucker

MOVEP, 12/03/12

C

SD

-iVCy VI
-IVCyVo

100/103

: umvlksmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Oniscent Monltors

isp

Example
i c 1 C 0
SD = iN-Cp —1 SD = -iVC VI
A IAN=C, =0 -IVCyVo
Observation: i A —0
SD = Ci vl
A =lVvC

Martin Leucker

MOVEP, 12/03/12

100/103

mv!ksmr ZU LOBECK
ITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Oniscent Monltors

isp

Example
i c 1 C 0
SD = iN-Cp —1 SD = -iVC VI
A IAN=C, =0 -IVCyVo
Observation: i A —0
SD = Ci vl
A =lVvC

Diagnoses: C; or C;

Martin Leucker

MOVEP, 12/03/12

100/103

mv!ksmr zu LUBECK
TIT OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Oniscent Monltors

isp

Example
i c 1 C 0
SD = iN-Cp —1 SD = -iVC VI
A IAN=C, =0 A —lIVCyVo
Observation: i A —0
SD = Ci vl
A =lVvC

Diagnoses: C; or C;

If additionally I known to be correct, only C, diagnosed.

Martin Leucker MOVEP, 12/03/12

100/103

mv!ksmr zu LUBECK
TIT OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Oniscent Monltors

isp

Example
i c 1 C 0
SD = iN-Cp —1 SD = -iVC VI
A IAN=C, =0 A —lIVCyVo
Observation: i A —0
SD = Ci vl
A =lVvC

Diagnoses: C; or C;

If additionally I known to be correct, only C, diagnosed.

~+ notion of omniscent diagnoses

Martin Leucker MOVEP, 12/03/12

100/103

Kl r;

‘ UNIVERSITAT ZU LUBECK
H INSTITUTE OF SOFTWARE ERGINEERING
Oy AND PROGRAMMING LANGUAGE:

- Presentation outline
Runtime Verification
Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
LTL over Non-Completed Words: Anticipation
LTL over Infinite Words: With Anticipation
Generalisations: LTL with modulo Constraints

ooy,

Monitorable Properties
LTL with a Predictive Semantics
LTL wrap-up
Extensions
Monitoring Systems/Logging
Steering
Diagnosis
Ideas
RV and Diagnosis

Conclusion «Or«Fr=r > T 9AC
. MartinLeucker ~ MOVER12/0312 101103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Conclusion

Summary

» RV for Failure detection

> various, multi-valued approaches
> various existing systems
> does generally identifies failure detection and identification

» Diagonis for Failure identification?

Future work

What is the right combination?

Martin Leucker MOVEP, 12/03/12 102/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Pt AND PROGRAMMING LANGUAGES

That’s it!

Thanks! - Comments?

Martin Leucker MOVEP, 12/03/12 103/103

UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING

Pt AND PROGRAMMING LANGUAGES

That’s it!

Thanks! - Comments?

Martin Leucker MOVEP, 12/03/12 103/103

	Runtime Verification
	Runtime Verification for LTL
	LTL over Finite, Completed Words
	LTL over Finite, Non-Completed Words: Impartiality
	LTL over Non-Completed Words: Anticipation
	LTL over Infinite Words: With Anticipation
	Generalisations: LTL with modulo Constraints
	Monitorable Properties
	LTL with a Predictive Semantics
	LTL wrap-up

	Extensions
	Monitoring Systems/Logging
	Steering
	Diagnosis
	Ideas
	RV and Diagnosis

	Conclusion

