umvlkslmr zu Lua:ck
T SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

Technical Talk on
Runtime Verification

Martin Leucker

Institute for Software Engineering
Universitét zu Liibeck

Marseille, Monday 3rd of December 2012

Martin Leucker MOVEP, 12/03/12

isp

1/103



UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker MOVEP, 12/03/12 2/103



UNIVERSITAT ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

Martin Leucker MOVEP, 12/03/12 2/103



AND PROGRAMMING LANGUAG ES

N T E F SbeTwaRE enciNEERING iS p
Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Martin Leucker MOVEP, 12/03/12 2/103



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

Martin Leucker MOVEP, 12/03/12

2/103



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

Martin Leucker MOVEP, 12/03/12 2/103



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions
» Simple verification technique

» Complementing

Martin Leucker MOVEP, 12/03/12 2/103



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique

» Complementing
» Model Checking

Martin Leucker MOVEP, 12/03/12 2/103



Z UNIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

Martin Leucker MOVEP, 12/03/12 2/103



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Runtime Verification (RV)

always (not x > 0 implies next x > 0)

Characterisation
> Verifies (partially)
correctness properties
based on actual executions

» Simple verification technique
» Complementing

» Model Checking
> Testing

» Formal: w € L(p)
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> as formula ¢ of linear-time temporal logic (LTL)
> with models £(p)

» Model of System
> as transition system S with runs £(S)
» Model Checking Problem:
Do all runs of the system satisfy the specification
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v

Model Checking: infinite words

v

Runtime Verification: finite words

> yet continuously expanding words

v

In RV: Complexity of monitor generation is of less importance than
complexity of the monitor

Model Checking: White-Box-Systems

v

v

Runtime Verification: also Black-Box-Systems
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Testing

Testing: Input/Output Sequence
» incomplete verification technique
> test case: finite sequence of input/output actions
> test suite: finite set of test cases

> test execution: send inputs to the system and check whether the actual
output is as expected

Testing: with Oracle
> test case: finite sequence of input actions
» test oracle: monitor
> test execution: send test cases, let oracle report violations

» similar to runtime verification
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Testing versus RV

» Test oracle manual
» RV monitor from high-level specification (LTL)
> Testing:

How to find good test suites?

» Runtime Verification:
How to generate good monitors?
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Runtime Verification for LTL
LTL over Finite, Completed Words
LTL over Finite, Non-Completed Words: Impartiality
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Monitorable Properties
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Monitoring Systems/Logging
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Diagnosis
Ideas
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Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.
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Definition (Runtime Verification)

Runtime verification is the discipline of computer science that deals with the
study, development, and application of those verification techniques that
allow checking whether a run of a system under scrutiny (SUS) satisfies or

violates a given correctness property.

Its distinguishing research effort lies in synthesizing monitors from high level

specifications.

Definition (Monitor)

A monitor is a device that reads a finite trace and yields a certain verdict.

A verdict is typically a truth value from some truth domain.
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Runtime Verification for LTL

Observing executions/runs

Idea
Specify correctness properties in LTL

Commercial
Specify correctness properties in Regular LTL
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Runtime Verification for LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

w u= true|p |pVelpUp|Xp |
false | splonp|pRo | Xp |
—p
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Semantics
overw € (247)* = xv

|
{r.q} P p q q

Abbreviation
Fo = truellp Gy = - F-p
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Llnear-tlme Temporal Logic (LTL)

Semantics
overw € (247)¥ = % P v
P X
I > = pUg
{p.a} p p q q X(pUgq)

Abbreviation
Fo = truellp Gy = - F-p

Example

G (critic1 A criticy), G(—alive — Xalive)
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LTL on infinite words

Definition (LTL semantics (traditional))

Semantics of LTL formulae over an infinite word w = apa; ... € ¥“, where
wi =aidi4+1 ...
w = true
wk=p if peap
w = —p if pd&ao
w = - if notwkE ¢
wEeVYy if wlEkyporwkEy
wEeANyY if wkEeandw =y
w = Xp if w'Eep
w = X if w'Ee
wkEeU if thereiskwith0 <k < |w|: wk =1
and forall I with 0 < I < k' |=
wk=@Ry if forallkwith0 <k < |w|: (w* =
or thereis I with 0 < I < kw' |= ¢)

Martin Leucker MOVEP, 12/03/12 15/103
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LTL for the working engineer??

Simple??

“LTL is for theoreticians—but for practitioners?”

SALT

Structured Assertion Language for Temporal Logic
“Syntactic Sugar for LTL” [Bauer, L., Streit@l CFEM’06]
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Projects

SALT - Smart Assertion Language for Temporal Logic

Goal

Do you want to specify the behavior of your program in a rigorously yet comfortable manner?
Do you see the benefits of temporal specifications but are bothered by the awkward farmalisms available?
Do you want to use

= the power of a Model Checkerto improve the quality of your systems or
® the nowerful nintime reflection annrnach far hila huntina and alimination

Martin Leucker MOVEP, 12/03/12 17/103
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Runtime Verification for LTL

Idea
Specify correctness properties in LTL

Definition (Syntax of LTL formulae)

Let p be an atomic proposition from a finite set of atomic propositions AP.
The set of LTL formulae, denoted with LTL, is inductively defined by the

following grammar:

p = true|p |eVoe|oUep|Xe |
false | =p | oAp | pRo | Xp |
P

Martin Leucker MOVEP, 12/03/12 18/103
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Truth Domain

Lattice

> A lattice is a partially ordered set (£, C) where for each x,y € L, there
exists

1. aunique greatest lower bound (glb), which is called the meet of x and y, and
is denoted with x My, and

2. aunique least upper bound (lub), which is called the join of x and y, and is
denoted with x LI y.

» A lattice is called finite iff £ is finite.

» Every finite lattice has a well-defined unique least element, called
bottom, denoted with L,

» and analogously a greatest element, called top, denoted with T.

Martin Leucker MOVEP, 12/03/12 19/103
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Truth Domains (cont.)

Lattice (cont.)

> A lattice is distributive, iff x M (y U z) = (x My) U (x M z), and, dually,
xU(yNz)=(xUy) N (xUz).

> In a de Morgan lattice, every element x has a unique dual element ¥,
such that ¥ = x and x C y implies y C x.

Definition (Truth domain)

We call £ a truth domain, if it is a finite distributive de Morgan lattice.

Martin Leucker MOVEP, 12/03/12 20/103
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LTL's semantics using truth domains

Definition (LTL semantics (common part))

Semantics of LTL formulae over a finite or infinite word w = agay . .. € £°

Boolean constants Boolean combinations

[w |= true] ¢ =
[w |= false] o

atomic propositions

[w |= P]Q = {I

next X/weak next X TBD

until/release
wi=eUdle

© R

Martin Leucker

T = —ele
L [wE=eVviyle
Wl e Avle
ifp € ag -
ity ¢ g = —rle

isp

[wk=ele

[whEelegUwi=vle
[w=ele Nwi=Yle

- |

T
L

ifp & ag
ifp € ag

T thereisak, 0 < k < \wl:[wk = ¥]e = T and

TBD else
= (- U-p)

MOVEP, 12/03/12

= forall Iwith0 < I < k: [0l = @] = T
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Outline

Runtime Verification for LTL
LTL over Finite, Completed Words
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LTL on finite words

Application area: Specify properties of finite word

o
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LTL on finite words

Definition (FLTL)

Semantics of FLTL formulae over a word u = a9 . .

next
wexg, = JWEeEr
1
weak next
wexdr = {4
T

Martin Leucker MOVEP, 12/03/12

isp

y_1 €D

iful # ¢

otherwise

iful e

otherwise

24/103



UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitoring LTL on finite words

(Bad) Idea

just compute semantics. . .

Martin Leucker MOVEP, 12/03/12

isp
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Outline
Runtime Verification for LTL

LTL over Finite, Non-Completed Words: Impartiality
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LTL on finite, but not completed words

Application area: Specify properties of finite but expanding word

s

o = =
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LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know
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LTL on finite, but not completed words

Be Impartial!
> go for a final verdict (T or L) only if you really know

> be a man: stick to your word
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LTL on finite, but not complete words

Impartiality implies multiple values

Every two-valued logic is not impartial.

Definition (FLTL)
Semantics of FLTL formulae overaword u = ag...a4,_1 € X*

next

' gle iful #e

[ufE Xelr =
17 otherwise

weak next

W' el ifu' #e
TP otherwise

[ = Xl

Martin Leucker MOVEP, 12/03/12 29/103
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Monitoring LTL on finite but expanding words

Left-to-right!
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Monitoring LTL on finite but expanding words

Rewriting

Idea: Use rewriting of formula

Evaluating FLTL4 for each subsequent letter
> evaluate atomic propositions
> evaluate next-formulas
» that’s it thanks to
pUPp =9V (pAXpU)
and

PRY=¢A(pVXpR)

» and remember what to evaluate for the next letter

Martin Leucker MOVEP, 12/03/12 31/103
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Evaluating FLTL4 for each subsequent letter

Pseudo Code

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
-

PV

pAY

pUy
® R P

X

0 0 o o

(LR TR

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (valPhi, -phiRew)

let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a

in (valPhi Il valPsi,phiRew A psiRew)
evalFLTL4d ¥V (¢ AX(p UY)) a
evalFLTL4 ¥ A (p VX(p R)) a

(L7, o)

(TP, )

MOVEP, 12/03/12 32/103
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Monitoring LTL on finite but expanding words

Automata-theoretic approach
» Synthesize automaton

» Monitoring = stepping through automaton

Martin Leucker MOVEP, 12/03/12 33/103
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Rewriting vs. automata

INEERING
s

isp

Rewriting function defines transition function

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

evalFLTL4

evalFLTL4

evalFLTL4
evalFLTL4
evalFLTL4
evalFLTL4

Martin Leucker

true
false
P
—p

eV

PAY

e U
R P
X

X

Q9 0 0 0

v oo op W

(T, T)

(L,1)

((p in a), (p in a))

let (valPhi,phiRew) = evalFLTL4 ¢ a
in (Ggigﬁz,ﬁphiRew)

let
(valPhi, phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 3 a
in (valPhi U valPsi,phiRew V psiRew)
let
(valPhi,phiRew) = evalFLTL4 ¢ a
(valPsi,psiRew) = evalFLTL4 % a

in (valPhi I valPsi,phiRew A psiRew)

= evalFLTL4 ¥ V (p AX(p U)) a

evalFLTL4 ¥ A (¢ VX(p R)) a
(L7, p)
(T, 9)
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The roadmap

» alternating Mealy machines
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» alternating Mealy machines

» Moore machines
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Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines

> alternating machines
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Automata-theoretlc approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines

» non-deterministic machines
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Automata-theoretic approach

The roadmap
» alternating Mealy machines
» Moore machines
> alternating machines
» non-deterministic machines

» deterministic machines

Martin Leucker MOVEP, 12/03/12 35/103
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Automata-theoretlc approach

The roadmap

>

>

>

Martin Leucker

alternating Mealy machines
Moore machines
alternating machines
non-deterministic machines
deterministic machines

state sequence for an input word

MOVEP, 12/03/12

isp

35/103
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Supporting alternating finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Martin Leucker MOVEP, 12/03/12 36/103
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Supporting alternatlng finite-state machines

Definition (Alternating Mealy Machine)

A alternating Mealy machine is a tupel M = (Q, 3, T, qo, §) where
» (Qis a finite set of states,
» X is the input alphabet,
» T'is a finite, distributive lattice, the output lattice,
> qo € Qis the initial state and

» §:Q x % — BT(T x Q) is the transition function

Convention
Understand § : Q x & — BT (T' x Q) asa function§ : Q x ¥ — T' x BT(Q)

Martin Leucker MOVEP, 12/03/12 36/103
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Supportlng alternatlng finite-state machines

Definition (Run of an Alternating Mealy Machine)

A run of an alternating Mealy machine M = (Q, 3, T, g0, 0) on a finite word
u=dg...a,—1 € LT is a sequence t (o) y Gk oy 1) ek
that
> to = qgo and
> (ti,bio1) = (ti1,8i-1)
where § is inductively defined as follows
> 8(g,a) = 8(g,0),
> 3(qV q',0) = (g, @) US(q', ), (g, 0)]2 v 5(q', )), and
> (g Ad',0) = (@@ N 8(q, ), 3(q,0)]2 A 5(a',a)12)
The output of the run is b,_;.
37/103
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Transitlon functlon of an alternating Mealy machine

Transition function &§ : Q x ¥ — B™(I" x Q)

Martin Leucker

0y (true, a)
04 (false, a)

5 (p,a)

(o Vi,a)
(¢ N1, a)
(¢ Uh,a)

5i(p R 1,a)

(T, true)
(L, false)
(

53 (p,a) v 04(¢), a)
(s, ) A\ 63(¢, a)

5i( v (e A X(p U tp)),a)
33 (1,a) V (33, a) A (p U 9))
G A (o VX(pR)),0)
33(1,a) A (33, a) V (p R 9))
(L7, )

(T%, )

MOVEP, 12/03/12
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Outline

Runtime Verification for LTL

LTL over Non-Completed Words: Anticipation
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Anticipatory Semantics

Consider possible extensions of the non-completed word

=
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Outline

Runtime Verification for LTL

LTL over Infinite Words: With Anticipation

Martin Leucker MOVEP, 12/03/12 41/103



UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

Martin Leucker MOVEP, 12/03/12 42/103
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LTL for RV [BLS@FSTTCS’06]

Basic idea
» LTL over infinite words is commonly used for specifying correctness
properties

» finite words in RV:
prefixes of infinite, so-far unknown words

» re-use existing semantics

3-valued semantics for LTL over finite words
T ifVoeX¥:uo k=g
Ul = 1 ifVoeX¥:uo o

7?7  else

Martin Leucker MOVEP, 12/03/12 42/103
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Impartial Anticipation

Impartial
» Stay with T and L
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Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

Martin Leucker

E  XXXfalse
E  XXfalse

MOVEP, 12/03/12
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Impartial Antlclpatlon

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
a E  XXfalse
ar = Xfalse
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Impartial Anticipation

Impartial
» Stay with T and L

Anticipatory
» Gofor T or L
» Consider XXXfalse

€ E  XXXfalse
a E  XXfalse
ar = Xfalse
aaa = false
T ifVo € % : e0 = XXXfalse
[e E XXXfalse] = ¢ 1 ifVo € 2% : eo = XXXfalse

7 else
Martin Leucker MOVEP, 12/03/12 43/103
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Biichi automata (BA)

ab
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Biichi automata (BA)

ab
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aba
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Blichi automata (BA)

aba
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Biichi automata (BA)

abab
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Biichi automata (BA)

abab...
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Biichi automata (BA)

abab...
(ab)“ € L(A)

Martin Leucker MOVEP, 12/03/12 44/103



NIVERSITAT ZU LUBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Buchi automata (BA)

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)
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Buchi automata (BA)

Emptiness test:

abab...
(ab)® € L(A)
(ab)*aa{a,b}* C L(A)
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Buchi automata (BA)

Emptiness test: SCCC, Tarjan

a,b

&
W‘/
Q

abab...
(ab)* € L(A)
(ab)*aa{a,b}* C L(A)

Martin Leucker MOVEP, 12/03/12 44/103
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LTL to BA

[Vardi & Wolper '86]

» Translation of an LTL formula ¢ into Biichi automata A, with

L(Ay) = L(p)

» Complexity: Exponential in the length of ¢

Martin Leucker MOVEP, 12/03/12 45/103
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Monitor construction — Idea |

T ifVoeX¥ :uokEp
MEel=9 L ifVoeXZ¥:uokyp

7 else

Martin Leucker MOVEP, 12/03/12
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Monitor construction — Idea |

T ifVoeX¥ :uokEp
uEwl=¢ L ifVoeX uoltp

7 else

Martin Leucker MOVEP, 12/03/12
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Monitor construction — Idea |

T ifVoeX¥ :uokEp

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T
Po
a

O}

b

Martin Leucker MOVEP, 12/03/12 46/103
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Monitor construction — Idea |

T ifVoeX¥:uc kg

uEwl=¢ L ifVoeX uoltp
7 else
a,b
T

Martin Leucker MOVEP, 12/03/12 46/103
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monitor construction — Idea Il
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monitor construction — Idea Il

#1
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monitor construction — Idea Il

<
W‘/
A

NFA
Fo: Qp — {T, L} Emptiness per state
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The complete construction

The construction

¢ —> BA? —> F? —» NFA?

Lemma

-
M@l =19 L ifu¢ L(NFA¥)

?

Martin Leucker MOVEP, 12/03/12
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The complete construction

The construction
¢ —= BA® —> F¥ — NFA”

-

Lemma

-
ME@l =19 L ifu¢ L(NFA¥)

?
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The complete construction

The construction
¢ —= BA® —> F¥ — NFA”

~% —>BA™¥ — F ¢ —~ NFA™¥

Lemma
T ifu¢ L(NFA™¥)
M@l =4 L ifug¢ CL(NFA®)

7 else

Martin Leucker MOVEP, 12/03/12
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48/103



valkslmr ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAGES

The complete construction

The construction

_— P (I %}
¥ BA F¥ — NFA

80\

9 —»BA™¥ — F ¥ -~ NFA ™%
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The complete construction

The construction

— > BAY —» F¥ —» ® @
-9 —=BA F¥ —= NFA* —~ DFA

80\

—Y —>BA7Y — F ¥ = NFA™¥ -~ DFA ¥
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The complete construction

The construction

_— P [ P 7}

. P ¥ BA F NFA DFA @

—
—¢ —>BA7Y — F ¥ = NFA™¥ ~DFA™¥

Martin Leucker MOVEP, 12/03/12
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Complexity

The construction

— — — > @

@ __— ¥ BA¥ F? NFA DFA i:@

-
9 —>BA™¥Y — F7%¢ > NFA7¥ -~ DFA™%
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Complexity

The construction

¥ — BA

\—* F¥ — NFA” — DFA® @
7 — F¥ -~ NFA ¥ ~ DFA™¥
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Complexity

The construction

Complexity
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Complexity

The construction

XFA? - DFAX i@
‘A™% » DFAF

Complexity

|M‘ S 22|<¢>

Optimal result!
FSM can be minimised (Myhill-Nerode)

Martin Leucker MOVEP, 12/03/12 49/103
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On-the-fly Construction

The construction

L RAP 4y TP ® 7
R BA F FA® — DFA
TN = BA™ — F ¥ =WFA™ - DFA™¥ @

Martin Leucker MOVEP, 12/03/12 50/103
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Outline

Runtime Verification for LTL

Generalisations: LTL with modulo Constraints

Martin Leucker MOVEP, 12/03/12
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Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
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Many linear-time logics
» LTL with Past
» linear-time p-calculus
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Towards richer and more expressive logics [DLS@ATVA’08]

Many linear-time logics
» LTL with Past
» linear-time p-calculus
» RLTL

» LTL with integer constraints

G(fopen, — ((x = Xx) U fclosey))

Martin Leucker MOVEP, 12/03/12
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Linear-time Loglc

Definition (Linear-time Logic)

A linear-time logic L defines
> aset F; of L-formulae and

> a two-valued semantics |=;.

Every L-formula ¢ € F; has an associated and possibly infinite alphabet .

Moreover, for every formula ¢ € F; and every word o € X, we require
(L1) th e F; : A F;.
(L2) Vo e Xy : (oL © oL y).

Martin Leucker MOVEP, 12/03/12
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Anticipation Semantlcs

Definition (Anticipation Semantics)

Let L be a linear-time logic. We define the anticipation semantics [ = ¢]; of
an L-formula ¢ € F; and a finite word = € £, with

T ifVoeXy : nofro
[r =], = 1 ifVoeXy : mo e

? otherwise

Martin Leucker MOVEP, 12/03/12 54/103
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Evaluation using deC|de

decide
T ifdecide o (7) = L
[T, =¢ L ifdecide,(n) =1
? otherwise

where decide,, () is defined to return T for ¢ € F; and 7 € X, if
do € 3 : 7o =L ¢ holds, and L otherwise.

Martin Leucker MOVEP, 12/03/12 55/103
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The automata theoretlc approach to SAT

Definition (Satisfiability Check by Automata Abstraction)

Given a linear-time logic L with its formulae F;, the satisfiability check by
automata abstraction proceeds as follows. For formula ¢ € Fp,

1. define alphabet abstraction ¥, — ¥, finite, abstract alphabet
2. define a word abstraction a(-) : 3% — %

3. define an automaton construction ¢ + w-automaton A, over %, such
that for all & € £ it holds

L(Ap)iff Jo € 3¥ : 6 =a(o)and o = ¢

Then
¢ satisfiable iff £L(A,) # 0 iff non-empty(A,)

Martin Leucker MOVEP, 12/03/12 56/103
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From finite to |nf|n|te

Definition (extrapolate)

extrapolate( {a 7o) i+ 1=|n|,0€ ZW}

Definition (Accuracy of Abstract Automata)

accuracy of abstract automata property holds, if, for all = € 3%,
> (3o : mo L) = (3736 : 7o € L(A,)) with T € extrapolate(r),
» (36 : 75 € L(A,)) = (Fndo : wo =L ) with T € extrapolate(r).

Martin Leucker MOVEP, 12/03/12

57/103



: umvlksmr ZU LOBECK |
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGU

Non-mcremental version

Theorem (Correctness of decide)

Given a satisfiability check by automata abstraction for a linear-time logic L
satisfying the accuracy of automata property, we have

decide(w) = non-empty U (g, 7)

q€Qp, 7 €extrapolate ()

Martin Leucker MOVEP, 12/03/12 58/103
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Faithful abstraction

Definition (Forgettable Past and Faithful Abstraction)

Given « of a satisfiability check by automata abstraction. We say that

> a satisfies the forgettable past property, iff

)i+1,..i+1 .0

a(mao = a(ao)”

forallm € X%, |r| =i+ 1,a € X, and o € X*.
> «is called faithful, iff forallw € %, |x| =i+ 1,a € &, 0,0’ € X for

which there is some 0" € ¥ with a(r0)*a(ac’)" " = a(c”)* !
there also exists a ¢’’’ € ¢ with
a(ﬂ,a)o la(ao_l)O...O _ CE(TF[ZO'/”)OMH—l

Martin Leucker MOVEP, 12/03/12 59/103
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Incremental version

Theorem (Incremental Emptiness for Extrapolation)

Let A be a Biichi automaton obtained via a satisfiability check by automata
abstraction satisfying the accuracy of automaton abstraction property with a faithful
abstraction function having the forgettable past property. Then, for all T € ¥* and
a € X, it holds

L(A(extrapolate(na))) = L(.A(extrapolate(r)extrapolate(a)))

Martin Leucker MOVEP, 12/03/12 60/103
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Further logics

Indeed works
» LTL with Past

» linear-time pu-calculus
» RLTL

» LTL with integer constraints

Martin Leucker MOVEP, 12/03/12
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Outline

Runtime Verification for LTL

Monitorable Properties

Martin Leucker MOVEP, 12/03/12
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Monitorability

When does anticipation help?

Martin Leucker MOVEP, 12/03/12 63/103



UNIVERSITAT ZU LOBECK | S
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Monitors revisited

Structure of Monitors

NG
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Monitors reV|S|ted

Structure of Monitors

Classification of Prefixes of Words

» Bad prefixes

Martin Leucker

MOVEP, 12/03/12

isp

uopn

[Kupferman & Vardi'01]
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Monitors reV|S|ted

Structure of Monitors

uou

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
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Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
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Monitors rewsned
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Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
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Monitors rewsned

Structure of Monitors

Classification of Prefixes of Words
» Bad prefixes [Kupferman & Vardi'01]
» Good prefixes [Kupferman & Vardi'01]
» Ugly prefixes
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Monitorable

Non-Monitorable [Pnueli & Zaks’07]

 is non-monitorable after 1, if u cannot be extended to a bad oder good

prefix.

Monitorable

 is monitorable if there is no such u.
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Monitorable Properties

Safety Properties
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Monitorable Properties

Safety Properties

A\

Co-Safety Properties
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Monitorable Properties

Safety Properties

Co-Safety Properties

N

Note
Safety and Co-Safety Properties are monitorable

Martin Leucker MOVEP, 12/03/12
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Safety- and Co-Safety-Properties

Theorem

The class of monitorable properties
» comprises safety- and co-safety properties, but

> is strictly larger than their union.

Proof
Consider ((p v q)Ur) V Gp

Martin Leucker MOVEP, 12/03/12 67/103



5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

Outline

Runtime Verification for LTL

LTL with a Predictive Semantics

Martin Leucker MOVEP, 12/03/12
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Fusing model checking and runtime verification

LTL with a predictive semantics
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Recall anticipatory LTL semantics

The truth value of a LTLs formula ¢ wrt. 1, denoted by [u = ¢], is an element
of B3 defined by

T ifVoeX¥ uok=p
uFE o] = 1 ifVYoeX¥ uo o

7 otherwise.

Martin Leucker MOVEP, 12/03/12 70/103
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Applied to the empty word

Empty word e

e = ‘P]P =
iff VoeX“withec e P:eoc=op
ifft L(P)E=ey

RV more difficult than MC?

Then runtime verification implicitly answers model checking

Martin Leucker MOVEP, 12/03/12 71/103
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Abstraction

An over-abstraction or and over-approximation of a program P is a program
P such that £(P) C L(P) C =¢.

Martin Leucker MOVEP, 12/03/12 72/103
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Predictive Semantics

Definition (Predictive semantics of LTL)

Let P be a program and let P be an over-approximation of P. Let u € ¥*
denote a finite trace. The truth value of u and an LTL; formula ¢ wrt. P,
denoted by [u =5 ¢], is an element of B3 and defined as follows:
T ifVo € ¥ withuo € P:uo = ¢
MlEpel=4 L ifVoeX¥withuceP:uo o
?  else

We write LTLp whenever we consider LTL formulas with a predictive

semantics.

Martin Leucker MOVEP, 12/03/12 73/103
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Properties of Predlctlve Semantics

Let P be an over-approximation of a program P over ¥, u € %*, and
¢ € LTL.

» Model checking is more precise than RV with the predictive semantics:

P | ¢ implies [u =5 ¢] € {T,7}

» RV has no false negatives: [u =5 ¢] = L implies P [~ ¢

> The predictive semantics of an LTL formula is more precise than LTLs:

ME@ =T implies [ulFEpe@l=T
ME@ =1 implies [ufpepl =1

The reverse directions are in general not true.

Martin Leucker MOVEP, 12/03/12 74/103
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Monitor generation

The procedure for getting [u =5 ] for a given ¢ and
over-approximation P
(=)

Martin Leucker MOVEP, 12/03/12 75/103
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Intermediate Summary

Semantics

> completed traces
> two valued semantics

» non-completed traces
> Impartiality
> at least three values
> Anticipation
> finite traces

> infinite traces
>

> monitorability

> Prediction

Martin Leucker

isp

Monitors
> left-to-right
> time versus space trade-off
> rewriting
alternating automata

non-deterministic automata
deterministic automata

vvYyyvw

MOVEP, 12/03/12
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Extensions

LTL is just half of the story

Martin Leucker MOVEP, 12/03/12 79/103



i,
e

5 -
H .
H P S UNIVERSITAT ZU LOBECK.
eX 53 INSTITUTE OF SOFTWARE ENGINEERING I
©15.gys%" AND PROGRAMMING LANGUAGES

» J-LO




5 UNIVERSITAT ZU LUBECK
INSTITUTE OF SOFTWARE ENGINEERING
ES

AND PROGRAMMING LANGUAG

Extensions
LTL with data

» J-LO
» MOP (parameterized LTL)

Martin Leucker

MOVEP, 12/03/12
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Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints
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Extensions
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» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
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> Eagle (etc.)
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Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)

» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time
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Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)
» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time

> concurrency
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Extensions

LTL with data
» J-LO
» MOP (parameterized LTL)

» RV for LTL with integer constraints

Further “rich” approaches
» LOLA

> Eagle (etc.)

Further dimensions

> real-time
> concurrency

» distribution

Martin Leucker MOVEP, 12/03/12
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Presentation outline

Monitoring Systems/Logging
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onitoring Systems/Logging: Overview

Martin Leucker

trace tools

tracing /-
monitoring
hardware

/logging

MOVEP, 12/03/12
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instru-
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mentation
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Monitoring Systems/Logging: Overview

exception

monitoring results/

steering

print

Martin Leucker MOVEP, 12/03/12

automatically

manual

isp
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React!

Runtime Verification

Observe—do not react

Realising dynamic systems
> self-healing systems
» adaptive systems, self-organising systems

> ...
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Runtime Verification

Observe—do not react

Realising dynamic systems
> self-healing systems
» adaptive systems, self-organising systems
> ...

» use monitors for observation—then react

Martin Leucker MOVEP, 12/03/12 85/103
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jMOP [Rosu et aI.]

Java Implementation

class Resource {
/*@
Whond — < scope = class
How _,,—7]{.ogic = PTLTL
Event authenticate: end(exec (*
k;y,i -authenticate()));
Event use: begin(exec(* access()));
Formula : use -> <*> authenticate
}
“NJ* f.\\_(v1olatlon Handler {
@this.authenticate() ;

}
@x/
void authenticate() {...}
void access() {...}
}

Martin Leucker MOVEP, 12/03/12
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Runtime Reflectlon [Bauer, L., Schallhart@ASWEC’06]

Monitor-based Runtime Reflection

Software Architecture Pattern

Mitigation

i

Diagnosis

Safety-Critical |
System

Monitoring

i |

Logging

Martin Leucker MOVEP, 12/03/12
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Presentation outline

Diagnosis
Ideas
RV and Diagnosis
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Diagnosis

Main Ideas
» Knowledge base

» Knowledge
» Explanation of Knowledge with Respect to the Knowledge base
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Diagnosis

Main Ideas
» Knowledge base

» Knowledge
» Explanation of Knowledge with Respect to the Knowledge base

Here

» System description
» Observations

» Diagnosis: Explanation of the Observations with respect to the System
description

Martin Leucker MOVEP, 12/03/12 90/103
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System Description in First-Order Logic

Example

Martin Leucker

i I 01
— C1 C; —
iz lz 02
— C Cy —

MOVEP, 12/03/12
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System Descrlptlon in First-Order Logic

Example
e G
1 I 02
— Cz C4 |
Formally
SD = Ok(ll) —|AB(C1) — ll E C1 (11)
Ok(lz) N —\AB(Cz) — b = Cz(lz)
Ok(ll) AN Ok( 2) AN —|AB(C3) — 01 = C3(11, lz)
Ok(ll) N Ok( 2) —\AB(C4) — 02 = C4(l1, lz)

Martin Leucker MOVEP, 12/03/12 91/103
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System Description in Propositional Logic

Example
15 L 01
C1 C; —
iz ]2 02
— Cy
Martin Leucker MOVEP, 12/03/12
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System Descrlptlon in Propositional Logic

Example
i L 01
- G G —
i I 02
—| C Cy
Propositional Logic
SD = nAN-Ci =1L

AN B AN-C— 1

LALA-Cs— 01

LANbLAN—-Cy— 0

Martin Leucker MOVEP, 12/03/12
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Cs

01

Observation
Example
11 Cl
12 C2
Observation

02

(Truth) values for (some of) the propositions involved

Formally: a formula OBS

Observation
—01 A i1 A A0

Martin Leucker

MOVEP, 12/03/12
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Diagnosis
Example
i I 01
— Cl C3 s
1 I 02
— C Cy
Diagnosis

A minimal set of components such that SD A OBS A A is satisfiable, where A
encodes the chosen components.

Martin Leucker MOVEP, 12/03/12
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Example
Example

1 L 01

Cl C3 —>
1 I 02
— C Cs —

Propositional Logic
SD = 1 A=Ci =1 Observations
ip N=Cp — I =01 N1 ANipg A 03

hALbA-Cs— 01

LhANLA—-Cy— o0
Martin Leucker MOVEP, 12/03/12 95/103
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Example
Propositional Logic
SD = it A=C1 — Observations
b A=C— b —01 AN ip A2 A 02

hANLA-=Cs— 0
LhANlb AN=Cs— 0

SD A Observations

CNF
. SD = CiVh
SD = -i1VCi V1L
AN GV
-, VCy Vi
AN =L V=l VG
=l V=l VCsVop
A
=l V-l VCy Vo ; .
AN 01 AN1g AN1pa A\ 02

Martin Leucker MOVEP, 12/03/12 96/103



UNIVERSITAT ZU LOBECK
INSTITUTE OF SOFTWARE ENGINEERING
AND PROGRAMMING LANGUAG ES

isp

Example
Example
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— G C3 >
1
2 G 2 G 02

SD A Observations

SD = CiVvh
CVih
AN =l Vb VG
A =01 ANip Aip A0z
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Conclusion

Summary

» RV for Failure detection

> various, multi-valued approaches
> various existing systems
> does generally identifies failure detection and identification

» Diagonis for Failure identification?

Future work

What is the right combination?
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