Hybrid Type Systems

Jose A. Lopes

Max Planck Institute for Software Systems (MPI-SWS)

MOVEP 2012



Type systems

Type systems are a lightweight verification method

» Common in programming languages
» Increase software reliability
» Verify basic interface specifications

» Avoid complicated formalism



Type systems

Static
multiple types
» Earlier error detection
» Better documentation
» Allow more optimizations

» Increased runtime efficiency



Type systems

Dynamic
type Dynamic
» More expressive
» Fast adaptation to requirements
» Simpler component interaction

» Truly dynamic behavior



Problem

» Choosing between static/dynamic is not obvious

» Stronger formalism <> less flexibility



Hybrid type systems

Research goal

» Develop a hybrid type system
» Combine best of both static/dynamic

» Adjust type system to the development process



Type system properties

» Gradual typing (introduced by Siek [2])

» Type inference

» Polymorphism

» Generics & heterogeneous data structures
» Specifications

» Subtyping & covariance

> ...



Gradual typing & Type inference

Type annotations are optional and gradually
strengthen the type system

// accepted
(fn (x:Num) => x + 1) 1

// rejected
(fn (x:Num) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime
(fn (x) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime
(fn (x) => x + 1) true

~ (fn (x:Dyn) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime
(fn (x) => x + 1) true

~ (fn (x:Dyn) => x + 1) true

Q

(fn (x:Dyn) => (<Num> x) + 1) (<Dyn> true)



Polymorphism

Identity function

let idI (fun (x:Int) => x)
(idI 1) : Int

let idD = (fun (x:Double) => x)
(idD 2.0) : Double

let idIL = (fun (x:Int list) => x)
(idIL [1,2]) : Int list



Polymorphism

Polymorphic identity function
let id = (fun (x) => x)

(id 1) : Int
(id 2.0) : Double

(id [1,2]) : Int list

_>



Generics & heterogeneous data structures

[1, 2, 3] : Int list
[1.0, 2.0, 3.0] : Double list
(1, 2.0, "Hi"] : Dyn list

[1, 2.0, "Hi"] : Int V Double V String list



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let PosO = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0O =
if (n < 2)
then 1
else ((fib (n - 1)) + (fib (n - 2)))



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let PosO = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0O =
if (n < 2)
then 1
else ((fib (n - 1)) + (fib (n - 2)))



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let PosO = {x:Int | x >= 0}

let rec fib (n:Pos0):PosO =
if (n < 2)
then 1
else ((fib (n - 1)) + (fib (n - 2)))



Work & Conclusions

» Bidirectional typechecking with polymorphic
types (by Dunfield [1])

» Dynamic type encoding through union types
(e.g., Furr [2])

» Integrate refinement types (by Flanagan [2])



Bibliography (1/3)

@ E. Meijer and P. Drayton

Static typing where possible, dynamic typing when needed: The end
of the cold war between programming languages

In OOPSLA’'04 Workshop on Revival of Dynamic Languages, 2004.
[d J. Siek and W. Taha

Gradual typing for functional languages
In Scheme and Functional Programming Workshop, 2006.

@ M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin
Dynamic typing in a statically typed language

In ACM Transactions on Programming Languages and Systems,
pages 237-268, 13(2), 1991.



Bibliography (2/3)

R. Cartwright and M. Fagan
Soft typing
In PLDI'91. 1991. ACM Press.

C. Flanagan
Hybrid type checking

In POPL'06: The 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pa es 245-256, Charleston,
South Carolina, January 2006.

S. Thatte
Quasi-static typing
In POPL’90: Proceedings of the 17th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, pages 367-381,
New York, NY, USA, 1990. ACM Press.



Bibliography (3/3)

[4 J. Dunfield
Greedy bidirectional polymorphism
In ML'09: ML Workshop.

@ M. Furr, J. An, J. Foster, and M. Hicks
Static type inference for Ruby

In Proceedings of the 24th Annual ACM Symposium on Applied
Computing, OOPS track, Honolulu, HI. March 20009.

@ K. Knowles, A. Tomb, J. Gronski, S. Freund, and C. Flanagan

Sage: Unified Hybrid Checking for First-Class Types, General
Refinement Types, and Dynamic

In Scheme and Functional Programming workshop, 2006.



