
Hybrid Type Systems

Jose A. Lopes

Max Planck Institute for Software Systems (MPI-SWS)

MOVEP 2012



Type systems

Type systems are a lightweight verification method

I Common in programming languages

I Increase software reliability

I Verify basic interface specifications

I Avoid complicated formalism



Type systems

Static
multiple types

I Earlier error detection

I Better documentation

I Allow more optimizations

I Increased runtime efficiency



Type systems

Dynamic
type Dynamic

I More expressive

I Fast adaptation to requirements

I Simpler component interaction

I Truly dynamic behavior



Problem

I Choosing between static/dynamic is not obvious

I Stronger formalism ⇔ less flexibility



Hybrid type systems

Research goal

I Develop a hybrid type system

I Combine best of both static/dynamic

I Adjust type system to the development process



Type system properties

I Gradual typing (introduced by Siek [2])

I Type inference

I Polymorphism

I Generics & heterogeneous data structures

I Specifications

I Subtyping & covariance

I ...



Gradual typing & Type inference

Type annotations are optional and gradually
strengthen the type system

// accepted

(fn (x:Num) => x + 1) 1

// rejected

(fn (x:Num) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true

≈ (fn (x:Dyn) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true

≈ (fn (x:Dyn) => x + 1) true

≈ (fn (x:Dyn) => (<Num> x) + 1) (<Dyn> true)



Polymorphism

Identity function

let idI = (fun (x:Int) => x)

(idI 1) : Int

let idD = (fun (x:Double) => x)

(idD 2.0) : Double

let idIL = (fun (x:Int list) => x)

(idIL [1,2]) : Int list



Polymorphism

Polymorphic identity function

let id = (fun (x) => x) : a → a

(id 1) : Int

(id 2.0) : Double

(id [1,2]) : Int list



Generics & heterogeneous data structures

[1, 2, 3] : Int list

[1.0, 2.0, 3.0] : Double list

[1, 2.0, "Hi"] : Dyn list

[1, 2.0, "Hi"] : Int ∨ Double ∨ String list



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let Pos0 = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0 =

if (n < 2)

then 1

else ((fib (n - 1)) + (fib (n - 2)))



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let Pos0 = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0 =

if (n < 2)

then 1

else ((fib (n - 1)) + (fib (n - 2)))



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let Pos0 = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0 =

if (n < 2)

then 1

else ((fib (n - 1)) + (fib (n - 2)))



Work & Conclusions

I Bidirectional typechecking with polymorphic
types (by Dunfield [1])

I Dynamic type encoding through union types
(e.g., Furr [2])

I Integrate refinement types (by Flanagan [2])



Bibliography (1/3)

E. Meijer and P. Drayton

Static typing where possible, dynamic typing when needed: The end
of the cold war between programming languages

In OOPSLA’04 Workshop on Revival of Dynamic Languages, 2004.

J. Siek and W. Taha

Gradual typing for functional languages

In Scheme and Functional Programming Workshop, 2006.

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin

Dynamic typing in a statically typed language

In ACM Transactions on Programming Languages and Systems,
pages 237–268, 13(2), 1991.



Bibliography (2/3)

R. Cartwright and M. Fagan

Soft typing

In PLDI’91. 1991. ACM Press.

C. Flanagan

Hybrid type checking

In POPL’06: The 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pa es 245–256, Charleston,
South Carolina, January 2006.

S. Thatte

Quasi-static typing

In POPL’90: Proceedings of the 17th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 367–381,
New York, NY, USA, 1990. ACM Press.



Bibliography (3/3)

J. Dunfield

Greedy bidirectional polymorphism

In ML’09: ML Workshop.

M. Furr, J. An, J. Foster, and M. Hicks

Static type inference for Ruby

In Proceedings of the 24th Annual ACM Symposium on Applied
Computing, OOPS track, Honolulu, HI. March 2009.

K. Knowles, A. Tomb, J. Gronski, S. Freund, and C. Flanagan

Sage: Unified Hybrid Checking for First-Class Types, General
Refinement Types, and Dynamic

In Scheme and Functional Programming workshop, 2006.


