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Type systems

Type systems are a lightweight verification method

I Common in programming languages

I Increase software reliability

I Verify basic interface specifications

I Avoid complicated formalism



Type systems

Static
multiple types

I Earlier error detection

I Better documentation

I Allow more optimizations

I Increased runtime efficiency



Type systems

Dynamic
type Dynamic

I More expressive

I Fast adaptation to requirements

I Simpler component interaction

I Truly dynamic behavior



Problem

I Choosing between static/dynamic is not obvious

I Stronger formalism ⇔ less flexibility



Hybrid type systems

Research goal

I Develop a hybrid type system

I Combine best of both static/dynamic

I Adjust type system to the development process



Type system properties

I Gradual typing (introduced by Siek [2])

I Type inference

I Polymorphism

I Generics & heterogeneous data structures

I Specifications

I Subtyping & covariance

I ...



Gradual typing & Type inference

Type annotations are optional and gradually
strengthen the type system

// accepted

(fn (x:Num) => x + 1) 1

// rejected

(fn (x:Num) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true

≈ (fn (x:Dyn) => x + 1) true



Gradual typing & Type inference

// accepted, cast failure at runtime

(fn (x) => x + 1) true

≈ (fn (x:Dyn) => x + 1) true

≈ (fn (x:Dyn) => (<Num> x) + 1) (<Dyn> true)



Polymorphism

Identity function

let idI = (fun (x:Int) => x)

(idI 1) : Int

let idD = (fun (x:Double) => x)

(idD 2.0) : Double

let idIL = (fun (x:Int list) => x)

(idIL [1,2]) : Int list



Polymorphism

Polymorphic identity function

let id = (fun (x) => x) : a → a

(id 1) : Int

(id 2.0) : Double

(id [1,2]) : Int list



Generics & heterogeneous data structures

[1, 2, 3] : Int list

[1.0, 2.0, 3.0] : Double list

[1, 2.0, "Hi"] : Dyn list

[1, 2.0, "Hi"] : Int ∨ Double ∨ String list



Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let Pos0 = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0 =

if (n < 2)

then 1

else ((fib (n - 1)) + (fib (n - 2)))
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Specifications

Fibonacci sequence with refinement types
(introduced by Flanagan [2])

let Pos0 = {x:Int | x >= 0}

let rec fib (n:Pos0):Pos0 =

if (n < 2)

then 1
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Work & Conclusions

I Bidirectional typechecking with polymorphic
types (by Dunfield [1])

I Dynamic type encoding through union types
(e.g., Furr [2])

I Integrate refinement types (by Flanagan [2])
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