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What is probabilistic model checking?

Probabilistic model checking...

— is a formal verification technique
for modelling and quantitative analysis systems
that exhibit probabilistic behaviour

Formal verification...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems



Why quantitative verification?

Errors in computerised systems can be costly and may
involve numerical values and properties...

Pentium chip (1994) Ariane 5 (1996) Toyota Prius (2010)
Bug found in FPU. Self-destructs 37secs Software “glitch”

Intel (eventually) offers  into maiden launch. found in anti-lock
to replace faulty chips. Cause: uncaught braking system.

Estimated loss: $475m  overflow exception. 185,000 cars recalled.

- Why verify?

- “Testing can only show the presence of errors,
not their absence.” [Edsger Dijkstra]
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Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- Examples:
— Randomised back-off schemes
. CSMA protocol, 802.11 Wireless LAN
— Random choice of waiting time
. IEEE1394 Firewire (root contention), Bluetooth (device discovery)
— Random choice over a set of possible addresses
. IPv4 Zeroconf dynamic configuration (link-local addressing)
— Randomised algorithms for anonymity, contract signing, ...




Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

Examples:
— computer networks, embedded systems
— power management policies
— nano-scale circuitry: reliability through defect-tolerance



Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in distributed coordination algorithms
— as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
— to quantify rate of failures, express Quality of Service

- To model biological processes

— reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

Examples:
— molecular signalling networks, DNA computation

— spread of diseases...



Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?




Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Dits_crete Markov chains processes (MDPs)
Ime (DTMCs) (probabilistic automata)
Conti Continuous-time CTMDPS/IMCs
O”tti'nr]]‘éous Markov chains

(CTMCs)

Probabilistic timed
automata (PTAS)
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Course material

Reading

— [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

— [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

— [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

— [PTAs] Kwiatkowska, Norman and Sproston. Verification of
Real-Time Probabilistic Systems. In Modelling and
Verification..., p249-288, J Wiley & Son 2008.

For more information see
— 20 lecture course taught at Oxford
— http:/ /www.prismmodelchecker.org/lectures/pmc/

PRISM website www.prismmodelchecker.org
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Part 1

Discrete-time Markov chains




Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
- Costs and rewards

- Case study: Bluetooth device discovery
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- Transitions

Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

States

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur
in discrete time-steps

Probabilities

— probability of making transitions
between states is given by
discrete probability distributions

14



Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s;,;,P,L) where:
— S is a finite set of states (“state space”)
— Si,i¢ € S is the initial state
— P:S xS — [0,1]is the transition probability matrix
where 2., P(s,s’) = 1 forall s € S

— L:S — 2APjs function labelling states with atomic
propositions

Note: no deadlock states
— i.e. every state has at least
one outgoing transition
— can add self loops to represent
final/terminating states
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DTMCs: An alternative definition

- Alternative definition: a DTMC is:
— a family of random variables { X(k) | k=0,1,2,... }
— X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k

- Memorylessness (Markov property)
- PI’( X(k):Sk | X(k_] ):Sk—]’ ey X(O):SO )
= Pr( X(k)=s, | X(k-1)=s,_;)

- We consider homogenous DTMCs

— transition probabilities are independent of time
— P(s,_1,5) = Pr( X(k)=s, | X(k-1)=s,_;)

16



Paths and probabilities

- A (finite or infinite) path through a DTMC
— is a sequence of states s,5,;5,55... such that P(s;,s;,;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: o

-----

— sample space: Path(s) = set of all 5133;;;;

infinite paths from a state s
— events: sets of infinite paths froms 7
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

— for example: C(ss;s,)

17



Probability space over paths

- Sample space Q = Path(s)
set of infinite paths with initial state s
Event set 2,
— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpath(s) 1S the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

Probability measure Pr,
— define probability P,(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P,(w) = P(s,s;) - ... - P(s,_q,S,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths w
— Pry extends uniquely to a probability measure Prg:3p, .~ [0,1]

- See [KSK76] for further details

19



Probability space - Example

Paths where sending fails the first time
— W = 5,55,
— C(w) = all paths starting sys;s,...
— Po(w) = P(sq,s;) - P(sy,S5)
=1-0.01 =0.01
— Pro(C(w)) = Po(w) = 0.01

Paths which are eventually successful and with no failures
— C(50S153) U C(5051571S3) U C(5(5:515153) U ...
— Pro( C(syS;53) U C(545:5:53) U C(555:5151S3) U ...)
= P,5(50S153) + P.(505151S3) + Pp(SpS15151S3) + ...
=1-0.98 + 1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

. Costs and rewards

- Case study: Bluetooth device discovery
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PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_y o5 [ true U=10 deliver ]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

22



PCTL syntax

W is true with

PCTL syntax: / probability ~p

—¢ =truelaldAd| [P (W] (state formulas)
- =X | dUkd | dUD (path formulas)
T o A : T
“ ” ..... “bou nded “ ”
: “‘next” i i i ‘until
T Coioountl” T

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,2}, k e N

- A PCTL formula is always a state formula
— path formulas only occur inside the P operator

23




PCTL semantics for DTMCs

PCTL formulas interpreted over states of a DTMC
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the DTMC (S,s,,;,,P,L):

—sEa < a € L(s)

—SE O AP, < skE¢, and s E ¢,
— s E —¢ < s E ¢ is false
Examples

— S5 k= succ

— s, E try A —fail

24



PCTL semantics for DTMCs

- Semantics of path formulas:
— for a path w = s45;5,... in the DTMC:
- wEX$ S S, Eo¢
- wkE o, Uskdp, <« dFi<ksuchthats; = P, and Vj<i, s = ¢,
- wkE o, Udd, < Jk=0 such that w = ¢, U=k ¢,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

25



PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [ @ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s E P_g,: [ X fail ] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [wW] < Prob(s, ) ~p
— where: Prob(s, @) = Pr.{ w € Path(s) | w = @ }
— (sets of paths satisfying @ are always measurable [Var85])

26



More PCTL...

- Usual temporal logic equivalences:

— false = —true
— ¢ VP, = (0D A D)
— ¢ > b=, vV P,

—Fd=0d=truel ¢

-Godp=0¢ = —~(F —~¢)
— bounded variants: F=k ¢, G=k ¢

- Negation and probabilities

— e.g. —'P>p[¢1 Ucbz]Eng [P, U b, |
—eg.P.,[Gd]=P__ [F—d]

(false)
(disjunction)
(implication)

(eventually, “future”)
(always, “globally”)

27



Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

- A PCTL property P_, [ W ] is...
— qualitative when p is either O or 1
— quantitative when p is in the range (0,1)

- P.o[F d1is identical to EF ¢
— there exists a finite path to a ¢-state

. P_,; [F & ]is (similar to but) weaker than AF ¢
— e.g. AF “tails” (CTL) #= P_, [ F “tails” ] (PCTL)

28



Quantitative properties

Consider a PCTL formula P_, [ W ]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— we allow the form P_, [ @ ]
— “what is the probability that path formula ¢ is true?”
Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

PRISM [21]

—e— L =0.01
—a— ). =0.02
—a4— ). =0.03
e A= 0.04
Analytical [7]
~H-e- 1=0.01

Example
— P_, [ F err/total>0.1 ]
— “what is the probability

Probability

that 10% of the NAND s i:g‘gg
gate outputs are erroneous?’ - 4- 1=0.04

Number of restorative stages



Some real PCTL examples

. reliability
NAND multiplexing System / ......................................... :
— P_, [ F err/total>0.1 ]
— “what is the probability that 10% of the NAND gate outputs are
erroneous?’
....... Eé?fuc")"furﬁgﬁ"c'émm

Bluetooth wireless communication protocol .
— P_, [ F=treply_count=k ] /

— “what is the probability that the sender has received k
acknowledgements within t clock-ticks?”

fairness

. Secu nty EGL contract Signing pI‘OtOCO| /
— P_, [ F (pairs_a=0 & pairs_b>0) ]

— “what is the probability that the party B gains an unfair
advantage during the execution of the protocol?”

30



Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

. Costs and rewards

- Case study: Bluetooth device discovery
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PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,H)94,CY95]
— inputs: DTMC D=(S,s,,;,P,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check thats E d V s €S, i.e. Sat(dp) = S
— sometimes, just want to know if s,... = &, i.e. if 5, ., € Sat(d)

- Sometimes, focus on quantitative results
— e.g. compute result of P=? [ F error ]
— e.g. compute result of P=? [ F=k error ] for 0<k<100

32



PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of ¢
— example: ¢ = (—fail A try) — P_y 45 [ —fail U succ]

- For the non-probabilistic operators:

— Sat(true) = S
— Sat(a) ={seS|ael(s)}

— Sat(—$) = S\ Sat(d) / \

b

— Sat(d, A d,) = Sat(d,) N Sat(d,) & Pooos [+ U -]

. For the PNp [ @ ] operator - %D B é@

— need to compute the
probabilities Prob(s, ) © ©
for all statess € S fail fail

— focus here on “until”
case: Y = ¢, U §, 13




PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) foralls € S
First, identify all states where the probability is 1 or O

— Sves = Sat(P.; [, U ¢, ])

— S"o = Sat(P_o [, U, ]
- Then solve linear equation system for remaining states

- We refer to the first phase as “precomputation”
— two algorithms: ProbO (for S"°) and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons

— reduces the set of states for which probabilities must be
computed numerically (which is more expensive)

— gives exact results for the states in S¥¢s and S"° (no round-off)

— for P_,[-] where p is 0 or 1, no further computation required
34



PCTL until - Linear equations

Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations:

1 if se S
Prob(s, ¢, U d,) = | 0 if se S™
ZP(s,s')- Prob(s', ¢, U ¢,) otherwise

s'eS
N

— can be reduced to a system in |S?| unknowns instead of |S|
where S = S\ (Sves U Sno)

- This can be solved with (a variety of) standard techniques
— direct methods, e.g. Gaussian elimination

— iterative methods, e.g. Jacobi, Gauss-Seidel, ...
(preferred in practice due to scalability)

35



PCTL until - Example

- Example: P_,gs[ma UDb]

36



PCTL until - Example

. Example: P_.yg[-aUb]

SnO =
Sat(P_, [-a U b ])
1 0.3
a ................................
Syes —
0.1 07 Sat(P., [-aUb])

37




PCTL until - Example

Example: P_ys[-a UDb]

Sno —
Sat(P_, [-a U b ])

Let x; = Prob(s, —a U b)

i a
® SOIVe ; Syes _
0.1 07 Sat(P., [-aUb])
—(0
X; = X3 =0 :

Xo = 0.1%,+0.9x, = 0.8
Prob(-aUb) =x =1[0.8,0, 89,0, 1, 1]

Sat(P.os [ ~aUb]) ={s,545s} 38



PCTL model checking - Summary

- Computation of set Sat(®) for DTMC D and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— &, U=k d, : k matrix-vector multiplications, O(k|S|?)
— &, U &, : linear equation system, at most |S| variables, O(|S|3)

- Complexity:

— linear in |®| and polynomial in |S]

39
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- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking

- LTL model checking

. Costs and rewards

- Case study: Bluetooth device discovery
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Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P_,[...] always contains a single temporal operator)

- A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

— e.g. P_, [ GF ready ] - “with probability 1, the server always
eventually returns to a ready-state”

41



LTL - Linear temporal logic

- LTL syntax (path formulae only)

—pu=tuelalparyw|-w[Xy|lwUuy
— where a € AP is an atomic proposition
— usual equivalences hold: F ¢ = true U ¢, G b = —(F =)

- LTL semantics (for a path w)

— W E true always

— WkEa < a € L(w(0))

- WEY, AY, S WEY,and w =Y,

—WE Y S WHEY

—wWwEXY < wl[l... =y

- wWEY, Uy, < Jk=0 s.t. wlk...] E P, AVi<k wli...] =y,

where w(i) is ith state of w, and wli...] is suffix starting at w(i)
42



LTL examples

(F tmp_fail,) A (F tmp_fail,)
— “both servers suffer temporary failures at some point”

GF ready
— “the server always eventually returns to a ready-state”

FG error
— “an irrecoverable error occurs”

G (req — X ack)
— “requests are always immediately acknowledged”

43



LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
— for a state s of a DTMC and an LTL formula p:

— Prob(s, W) = Pr,{ w € Path(s) | w = Y}

— all such path sets are measurable [Var85]

- A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

— e.g. P_, [ GF ready ] - “with probability 1, the server always
eventually returns to a ready-state”

— e.g. P_y o, [ FG error | - “with probability at most 0.01, an
irrecoverable error occurs”

PCTL* subsumes both LTL and PCTL
— e.g. Py [ GF crity; ] A P_ys [ GF crit, ]

44



Fundamental property of DTMCs

- Strongly connected component (SCC)
— maximally strongly connected set of states

Bottom strongly connected component (BSCC)
— SCC T from which no state outside T is reachable from T

Fundamental property of DTMCs:

— “with probability 1,
a BSCC will be reached
and all of its states
visited infinitely often”

Formally:

— Pr.{ w € Path(s) | 3 i=0, 3 BSCC T such that
V j=iw()eTand
V s’eT w(k) = s' for infinitely many k} = 1
45



LTL model checking for DTMCs

LTL model checking for DTMCs relies on:

— computing probability of reaching a set of “accepting” BSCCs

— e.g. for two simple LTL formulae: GF a (“always eventually a”),
FG a (“eventually always a’) we have:

Prob(s, GF a) = Prob(s, F T.;,)

— where T, = union of all BSCCs
containing some state satisfying a

Prob(s, FG a) = Prob(s, F T:.,)

— where T, = union of all BSCCs Example:
containing only a-states Prob(s,, GF a)
= Prob(sy, F Tcrl)
- To extend this idea to arbitrary = Prob(s,, F {s3,5,,55})

LTL formula, we use w-automata... =2/3+1/6=5/6 ¢



Deterministic Rabin automata

w-automata represent sets of infinite words
— e.g. Buchi automata, Rabin automata, ...
— for probabilistic model checking, need deterministic automata
— so we use deterministic Rabin automata (DRAS)

- A deterministic Rabin automaton is a tuple (Q, , 8, q,, Acc):
— Q is a finite set of states, g, € Q is an initial state

— > is an alphabet, o : Q X ~ — Q is a transition function

— Acc ={ (L, K) }_, , € 22 x 2%is an acceptance condition

- A run of a word on a DRA is accepting iff:

— for some pair (L, K;), the states in L, are visited finitely often
and (some of) the states in K, are visited infinitely often

— orinLTL: V (FG LA GF Ki) 47

1<i<k



LTL & DRAS

Example: DRA for FG a
— acceptance condition is
Acc = { (aohia]) ) (@) ) a

—d

- Can convert any LTL formula ¢ on atomic propositions AP
— into an equivalent DRA A, over alphabet 24
— i.e. W F Y & trace(w) € L(A) for any path w

— can potentially incur a double exponential blow-up
(but, in practice, this does not occur and  is small anyway)

LTL model checking for DTMCs - the basic idea
— construct product of DTMC D and DRA A,
— compute ProbP(s, ¥) on product DTMC D ® A
48



Product DTMC for a DRA

+ The product DTMC D ® A for:
— for DTMC D = (S,s,,P,L) and
— and (total) DRA A = (Q, 2, 8, qg, { (Li, K) }_7 )
— is the DTMC (SxQ, (Siiv,Qinit)s P, L’) where:
Qinit = (g, L(Siniv)

P'((Sn q]); (stqz)) — {

. € L'(s,q) if g € L,and k; € L'(s,q) if q € K,

P(s,,s,) if g, =0(q,,L(s,))
0 otherwise

Note:

— D ® A can be seen as unfolding of D where g for each state
(s,q) records state of automata A for path fragment so far

— since A is deterministic, D ® A is a DTMC
— each path in D has a corresponding (unique) path in D ® A
— the probabilities of paths in D are preserved in D ® A 49



Product DTMC for a DRA

For DTMC D and DRA A

PrObD(51 A) — PrObD®A((Siqs)1 v]gigk (FG _'Ii AN GF kl)

— where g, = 8(qg,L(s))
Hence:

ProbP(s, A) = ProbP®A((s,q.), F Ta.)

— where T, is the union of all accepting BSCCs in D®A

— an accepting BSCC T of D®A is such that, for some 1<i<k,
no states in T satisfy |, and some state in T satisfies k;

Reduces to computing BSCCs and reachability probabilities

— so overall complexity for LTL is doubly exponential in |/,
polynomial in [M|; but can be reduced to singly exponential
50



Example: LTL for DTMCs

- Compute Prob(s,, G=b A GF a) for DTMC D:

DTMC D DRA A, for p = G-b A GF a

51




Example: LTL for DTMCs

DTMC D DRA A, for p = G-b A GF a

=

027 1o 011,
1 0.9
1 l

52



Example: LTL for DTMCs

DTMC D DRA A, for p = G-b A GF a

. ProbP(s, y)
= ProbP®AV (F T,)
= 3/4.

53
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Costs and rewards

We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

55



Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

56



DTMC reward structures

For a DTMC (§,s;,,,P,L), a reward structure is a pair (p,U)
— p:S — R_,is the state reward function (vector)
— L:S XS - R_,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and ris zero
(equivalently, p is zero and  returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and v as the energy cost of
each transition 57



PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

expected :
. reward is ~r

— wherer e R_,, ~ € {<,>,<,2}, ke N

R.. [ - ] means “the expected value of - satisfies ~r”

58



Types of reward formulas

Instantaneous: R_, [ I7¥ ]
— “the expected value of the state reward at time-step k is ~r”
— e.g. “the expected queue size after exactly 90 seconds”

+ Cumulative: R_, [ C=k]
— “the expected reward cumulated up to time-step k is ~r”
— e.g. “the expected power consumption over one hour”

Reachability: R_. [F ¢ ]

— “the expected reward cumulated before reaching a state
satisfying ¢ is ~r”

— e.g. “the expected time for the algorithm to terminate”
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Reward formula semantics

Formal semantics of the three reward operators
— based on random variables over (infinite) paths

Recall:
-sEP,[Ww] & Pry{wePath(s) | w=Y}~p

For a state s in the DTMC:
—sER_[IFK] < Exp(s, X_) ~r
—sER_[C=k] & Exp(s, Xc) ~r
—sSER,[F®] < Exp(s, Xpe) ~ T

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,
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Reward formula semantics

. Definition of random variables:
— for an infinite path w= s4s,5,...

X|=k ((D) = E(Sk )

Y (w) - 0 ifk=0
C<k - Z::o] E(Si)"‘L(Si’SiH) otherwise

0 if s, € Sat(d)
Xep(W) =1 oo if s. ¢ Sat(e) for alli> 0
i Zikjf p(s;)+(s,s,,) otherwise

— where kd, =min{ j | S; F $ }
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Model checking reward properties

Instantaneous: R_, [ I7¥ ]
- Cumulative: R_ [ C=t]

— variant of the method for computing bounded until
probabilities

— solution of recursive equations

Reachability: R_, [ F ¢ ]
— similar to computing until probabilities
— precomputation phase (identify infinite reward states)
— then reduces to solving a system of linear equation

For more details, see e.g. [KNPO7a]
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Overview (Part 1)

- Discrete-time Markov chains (DTMCs)

- PCTL: A temporal logic for DTMCs

- PCTL model checking
- LTL model checking
- Costs and rewards

- Case study: Bluetooth device discovery
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The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs
Support for:
— discrete-/continuous-time Markov chains (D/CTMCs)
— Markov decision processes (MDPs)
— probabilistic timed automata (PTAS)
— PCTL, CSL, LTL, PCTL*, costs/rewards, ...
Multiple efficient model checking engines
— mostly symbolic (BDDs) (up to 1010 states, 107-108 on avg.)
Successfully applied to a wide range of case studies

— communication protocols, security protocols, dynamic power
management, cell signalling pathways, ...

— http://www.prismmodelchecker.org/
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Bluetooth device discovery

Bluetooth: short-range low-power wireless protocol
— widely available in phones, PDAs, laptops, ...
— open standard, specification freely available
Uses frequency hopping scheme
— to avoid interference (uses unregulated 2.4GHz band)
— pseudo-random selection over 32 of 79 frequencies
Formation of personal area networks (PANs)
— piconets (1 master, up to 7 slaves)
— self-configuring: devices discover themselves
Device discovery
— mandatory first step before any communication possible

— relatively high power consumption so performance is crucial
— master looks for devices, slaves listens for master
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Slave (receiver) behaviour

Listens (scans) on frequencies for inquiry packets
— must listen on right frequency at right time

— cycles through frequency sequence at much slower speed
(every 1.28s)

sleep h i scan - hear respon se-\' random wait
- - N TN
. _/ )

= Rand[(l..l27]
v.\.-'.-_ g

-
-—'F_

On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

— avoid repeated collisions with other slaves
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Bluetooth - Results

Bluetooth device discovery - Huge model!
— complex interaction between sender/receiver
— genuine randomness - discrete time Markov chain model

— sender/receiver not initially synchronised, huge number of
possible initial configurations (17,179,869,184)

— initially, model checking infeasible
— partition into 32 scenarios, i.e. 32 separate DTMCs
— onh average, approx. 3.4 x 10? states, 536,870,912 initial

Property model checked:

— “worst-case (maximum) expected time to hear K replies, over
all possible initial configurations”

— also: how many initial states for each possible expected time

— and: cumulative distribution function assuming equal
probability for each initial state
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Bluetooth - Time to hear 1 reply
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- Worst-case expected time = 2.5716 sec
—in 921,600 possible initial states
— best-case = 635 pus
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Bluetooth - Time to hear 2 replies
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- Worst-case expected time = 5.177 sec

— in 444 possible initial states

— compare actual CDF with derived version which assumes times
to reply to first/second messages are independent
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Summary

Probabilistic model checking
— automated quantitative verification of stochastic systems
— to model randomisation, failures, ...

Discrete-time Markov chains (DTMCs)
— state transition systems + discrete probabilistic choice
— probability space over paths through a DTMC

Property specifications
— probabilistic extensions of temporal logic, e.g. PCTL, LTL
— also: expected value of costs/rewards

Model checking algorithms

— combination of graph-based algorithms, numerical
computation, automata constructions

Next: Markov decision processes (MDPs)
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