
Probabilistic Model CheckingProbabilistic Model CheckingProbabilistic Model CheckingProbabilistic Model Checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

MOVEP 2012

Markov decision processes

Part 2

3

Overview (Part 2)

• Markov decision processes (MDPs)

• Adversaries & probability spaces

• Properties of MDPs: The temporal logic PCTL

• PCTL model checking for MDPs

• Case study: Firewire root contention

4

Recap: Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• Formally: DTMC D = (S, sinit, PPPP, L) where:

− S is a set of states and sinit ∈ S is the initial state

− PPPP : S × S → [0,1] is the transition probability matrix

− L : S → 2AP labels states with atomic propositions

− define a probability space Prs over paths Paths

• Properties of DTMCs

− can be captured by the logic PCTL

− e.g. send → P≥0.95 [F deliver]

− key question: what is the probability
of reaching states T ⊆ S from state s?

− reduces to graph analysis + linear equation system

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

5

Nondeterminism

• Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary

6

Markov decision processes

• Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

− discrete set of states representing possible configurations of
the system being modelled

− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism

− in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

7

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,α,δ,L) where:

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− δ ⊆ S × α × Dist(S) is the transition
probability relation, where Dist(S) is the set
of all discrete probability distributions over S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− we also abuse notation and use δ as a function

− i.e. δ : S → 2α×Dist(S) where δ(s) = { (a,µ) | (s,a,µ) ∈ δ }

− we assume δ (s) is always non-empty, i.e. no deadlocks

− MDPs, here, are identical to probabilistic automata [Segala]

• usually, MDPs take the form: δ : S × α → Dist(S)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

8

Simple MDP example

• A simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

9

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

10

Paths and probabilities

• A (finite or infinite) path through an MDP M

− is a sequence of states and action/distribution pairs

− e.g. s0(a0,µ0)s1(a1,µ1)s2…

− such that (ai,µi) ∈ δ(si) and µi(si+1) > 0 for all i≥0

− represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

− note that a path resolves both types of choices:
nondeterministic and probabilistic

− PathM,s (or just Paths) is the set of all infinite paths starting
from state s in MDP M; the set of finite paths is PathFins

• To consider the probability of some behaviour of the MDP

− first need to resolve the nondeterministic choices

− …which results in a DTMC

− …for which we can define a probability measure over paths

11

Overview (Part 2)

• Markov decision processes (MDPs)

• Adversaries & probability spaces

• Properties of MDPs: The temporal logic PCTL

• PCTL model checking for MDPs

• Case study: Firewire root contention

12

Adversaries

• An adversary resolves nondeterministic choice in an MDP

− also known as “schedulers”, “strategies” or “policies”

• Formally:

− an adversary σ of an MDP is a function mapping every finite

path ω = s0(a0,µ0)s1...sn to an element of δ(sn)

• Adversary σ restricts the MDP to certain paths

− Paths
σ ⊆ Paths

σ and PathFins
σ ⊆ PathFins

σ

• Adversary σ induces a probability measure Prs
σ over paths

− constructed through an infinite state DTMC (PathFins
σ, s, PPPPs

σ)

− states of the DTMC are the finite paths of σ starting in state s

− initial state is s (the path starting in s of length 0)

− PPPPs
σ (ω,ω’)=µ(s) if ω’= ω(a,µ)s and σ(ω)=(a,µ)

− PPPPs
σ (ω,ω’)=0 otherwise

13

Adversaries - Examples

• Consider the simple MDP below

− note that s1 is the only state for which |δ(s)| > 1

− i.e. s1 is the only state for which an adversary makes a choice

− let µb and µc denote the probability distributions associated
with actions b and c in state s1

• Adversary σ1

− picks action c the first time

− σ1(s0s1)=(c,µc)

• Adversary σ2

− picks action b the first time, then c

− σ2(s0s1)=(b,µb), σ2(s0s1s1)=(c,µc), σ2(s0s1s0s1)=(c,µc)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

14

Adversaries - Examples

• Fragment of DTMC for adversary σ1

− σ1 picks action c the first time

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

s0s1s0

0.5
1

s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s30.5

1

1

15

Adversaries - Examples

• Fragment of DTMC for adversary σ2

− σ2 picks action b, then c

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

16

Memoryless adversaries

• Memoryless adversaries always pick same choice in a state

− also known as: positional, simple, Markov

− formally, for adversary σ:

− σ(s0(a0,µ0)s1...sn) depends only on sn

− resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:

− adversary σ1 (picks c in s1) is memoryless, σ2 is not

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
s1s0

s2

s3

0.5

0.5

1

1

{heads}

{tails}

{init} 1a

c

a

a

σ1

17

Overview (Part 2)

• Markov decision processes (MDPs)

• Adversaries & probability spaces

• Properties of MDPs: The temporal logic PCTL

• PCTL model checking for MDPs

• Case study: Firewire root contention

18

PCTL

• Temporal logic for properties of MDPs (and DTMCs)

− extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Example: send → P≥0.95 [true U≤10 deliver]

19

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,α,δ,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Semantics of path formulas:

− for a path ω = s0(a0,µ0)s1(a1,µ1)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

20

PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific adversary σ

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all adversaries σ”

− formally s ⊨ P~p [ψ] ⇔ Prs
σ(ψ) ~ p for all adversaries σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• Some equivalences:

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

s

¬ψ

ψ Prs
σ(ψ) ~ p

21

Minimum and maximum probabilities

• Letting:

− Prs
max(ψ) = supσ Prs

σ(ψ)

− Prs
min(ψ) = infσ Prs

σ(ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ Prs
min(ψ) ~ p

− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ Prs
max(ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
adversaries of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless adversaries suffice, i.e. there are always
memoryless adversaries σmin and σmax for which:

− Prs
σmin(ψ) = Prs

min(ψ) and Prs
σmax(ψ) = Prs

min(ψ)

22

Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]

− i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
Prs

min(ψ) or Prs
max(ψ) anyway

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”

23

Other classes of adversary

• A more general semantics for PCTL over MDPs

− parameterise by a class of adversaries Adv

• Only change is:

− s ⊨Adv P~p [ψ] ⇔ Prs
σ (ψ) ~ p for all adversaries σ ∈ Adv

• Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

• Alternatively, take Adv to be the set of all fair adversaries

− path fairness: if a state is occurs on a path infinitely often,
then each non-deterministic choice occurs infinite often

− see e.g. [BK98]

24

Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [F (agreement ∧ rounds≤2)]

− “what is the minimum probability that agreement is reached
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [F collisions=k]

− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols

− Pmin=? [F≤t stable]

− “what is the minimum probability of reaching a stable state
within k steps?”

25

Overview (Part 2)

• Markov decision processes (MDPs)

• Adversaries & probability spaces

• Properties of MDPs: The temporal logic PCTL

• PCTL model checking for MDPs

• Case study: Firewire root contention

26

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]

− inputs: MDP M=(S,sinit,α,δ,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Basic algorithm same as PCTL model checking for DTMCs

− proceeds by induction on parse tree of φ

− non-probabilistic operators (true, a, ¬, ∧) straightforward

• Only need to consider P~p [ψ] formulas

− reduces to computation of Prs
min(ψ) or Prs

max(ψ) for all s ∈ S

− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

− these slides cover the case Prs
min(φ1 U φ2), i.e. ~ ∈ {≥,>}

− case for maximum probabilities is very similar

− next (X φ) and bounded until (φ1 U≤k φ2) are straightforward
extensions of the DTMC case

27

PCTL until for MDPs

• Computation of probabilities Prs
min(φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

− or: use policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [F a]

≡

P≥p [true U a]

28

PCTL until - Precomputation

• Identify all states where Prs
min(φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2]), Sno = Sat(¬ P>0 [φ1 U φ2])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all adversaries the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists an adversary for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [F a])

Sno = Sat(¬P>0 [F a])

Example:

P≥p [F a]

29

Method 1 - Linear programming

• Probabilities Prs
min(φ1 U φ2) for remaining states in the set

S? = S \ (Syes ∪ Sno) can be obtained as the unique solution
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

maximize xs subject to the constraints :
s∈ S ?∑

xs ≤ µ(s')⋅ xs' +

s'∈S ?

∑ µ(s')
s'∈S yes

∑

for all s ∈ S? and for all (a, µ) ∈ δ(s)

30

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

31

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8

32

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)

33

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

34

Method 2 – Value iteration

• For probabilities Prs
min(φ1 U φ2) it can be shown that:

− Prs
min(φ1 U φ2) = limn→∞ xs

(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s')⋅ xs'

(n−1)

s'∈S

∑



 




  if s ∈ S? and n > 0















35

Example - PCTL until (value iteration)

Compute: Prsi
min(F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0, 0, 1, 0]

n=1: [min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0]

= [0, 0.4, 1, 0]

n=2: [min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0]

= [0.4, 0.6, 1, 0]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

36

Example - PCTL until (value iteration)

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

37

Example - Value iteration + LP

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

x0

x1

0
0

2/3

1

38

Method 3 - Policy iteration

• Value iteration:

− iterates over (vectors of) probabilities

• Policy iteration:

− iterates over adversaries (“policies”)

• 1. Start with an arbitrary (memoryless) adversary σ

• 2. Compute the reachability probabilities Prσ (F a) for σ

• 3. Improve the adversary in each state

• 4. Repeat 2/3 until no change in adversary

• Termination:

− finite number of memoryless adversaries

− improvement in (minimum) probabilities each time

39

Method 3 - Policy iteration

• 1. Start with an arbitrary (memoryless) adversary σ

− pick an element of δ(s) for each state s ∈ S

• 2. Compute the reachability probabilities Prσ(F a) for σ

− probabilistic reachability on a DTMC

− i.e. solve linear equation system

• 3. Improve the adversary in each state

• 4. Repeat 2/3 until no change in adversary

σ' (s) = argmin µ(s') ⋅ Prs'
σ(F a)

s'∈S

∑ | (a,µ) ∈ δ(s)




 





 

40

Example - Policy iteration

Arbitrary adversary σ:

Compute: Prσ(F a)

Let xi = Prsi
σ(F a)

x2=1, x3=0 and:

• x0 = x1

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ(F a) = [1, 1, 1, 0]

Refine σ in state s0:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}

= min{1, 0.75} = 0.75

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

41

Example - Policy iteration

Refined adversary σ’:

Compute: Prσ’(F a)

Let xi = Prsi
σ’(F a)

x2=1, x3=0 and:

• x0 = 0.25·x0 + 0.5

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ’(F a) = [2/3, 14/15, 1, 0]

This is optimal

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

42

Example - Policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

σx1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

σ’

43

PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity:

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |δ(s)| is constant

44

Costs and rewards for MDPs

• We can augment MDPs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

• Extend logic PCTL with R operator, for “expected reward”

− as for PCTL, either R~r […], Rmin=? […] or Rmax=? […]

• Some examples:

− Rmin=? [I=90], Rmax=? [C≤60], Rmax=? [F “end”]

− “the minimum expected queue size after exactly 90 seconds”

− “the maximum expected power consumption over one hour”

− the maximum expected time for the algorithm to terminate

45

LTL model checking for MDPs

• Model check LTL specification P~p [ψ] against MDP M

• 1. Convert problem to one needing maximum probabilities

− e.g. convert P>p [ψ] to P<1-p [¬ψ]

• 2. Generate a DRA for ψ (or ¬ψ)

− build nondeterministic Büchi automaton (NBA) for ψ [VW94]

− convert the NBA to a DRA [Saf88]

• 3. Construct product MDP M⊗A

• 4. Identify accepting end components (ECs) of M⊗A

• 5. Compute max. probability of reaching accepting ECs

− from all states of the D⊗A

• 6. Compare probability for (s, qs) against p for each s

46

LTL model checking for MDPs

• Maximal end components

− can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

• Qualitative LTL model checking

− no numerical computation: use Prob1E, Prob0A algorithms

• Complexity of model checking LTL formula ψ on MDP M

− is doubly exponential in |ψ| and polynomial in |M|

− unlike DTMCs, this cannot be improved upon

• PCTL* model checking

− LTL model checking can be adapted to PCTL*, as for DTMCs

• Optimal adversaries for LTL formulae

− memoryless adversary always exists for pmax(s, GF a)
and for pmax(s, FG a) but not for arbitrary LTL formulae

47

Overview (Part 2)

• Markov decision processes (MDPs)

• Adversaries & probability spaces

• Properties of MDPs: The temporal logic PCTL

• PCTL model checking for MDPs

• Case study: Firewire root contention

48

Case study: FireWire protocol

• FireWire (IEEE 1394)

− high-performance serial bus for networking
multimedia devices; originally by Apple

− "hot-pluggable" - add/remove
devices at any time

− no requirement for a single PC (need acyclic topology)

• Root contention protocol

− leader election algorithm, when nodes join/leave

− symmetric, distributed protocol

− uses electronic coin tossing and timing delays

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry

49

FireWire example

50

FireWire leader election

RRRR

51

FireWire root contention

Root
contention

52

FireWire root contention

Root
contention

RRRR

53

FireWire analysis

• Probabilistic model checking

− model constructed and analysed using PRISM

− timing delays taken from standard

− model includes:

• concurrency: messages between nodes and wires

• underspecification of delays (upper/lower bounds)

− max. model size: 170 million states

• Analysis:

− verified that root contention always
resolved with probability 1

− investigated time taken for leader election

− and the effect of using biased coin

• based on a conjecture by Stoelinga

54

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

55

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

56

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

57

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

58

Summary (Part 2)

• Markov decision processes (MDPs)

− extend DTMCs with nondeterminism

− to model concurrency, underspecification, …

• Adversaries resolve nondeterminism in an MDP

− induce a probability space over paths

− consider minimum/maximum probabilities over all
adversaries

• Property specifications

− PCTL: exactly same syntax as for DTMCs

− but quantify over all adversaries

• Model checking algorithms

− covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

