

Probabilistic Model Checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

MOVEP 2012

Part 2

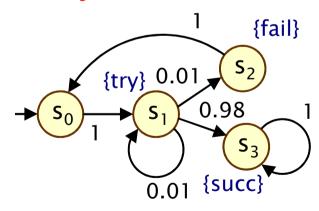
Markov decision processes

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - S is a set of states and $s_{init} \in S$ is the initial state
 - $-P:S\times S\rightarrow [0,1]$ is the transition probability matrix
 - $-L:S \rightarrow 2^{AP}$ labels states with atomic propositions
 - define a probability space Pr, over paths Path,
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send → $P_{>0.95}$ [F deliver]
 - key question: what is the probability of reaching states T ⊆ S from state s?
 - reduces to graph analysis + linear equation system

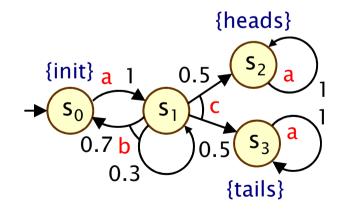


Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states



Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - α is an alphabet of action labels
 - $-\delta \subseteq S \times \alpha \times Dist(S)$ is the transition probability relation, where Dist(S) is the set of all discrete probability distributions over S
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Notes:
 - we also abuse notation and use δ as a function
 - − i.e. δ : S → 2^{α×Dist(S)} where δ (s) = { (a,μ) | (s,a,μ) ∈ δ }
 - we assume δ (s) is always non-empty, i.e. no deadlocks
 - MDPs, here, are identical to probabilistic automata [Segala]
 - · usually, MDPs take the form: $\delta : S \times \alpha \rightarrow Dist(S)$

{heads}

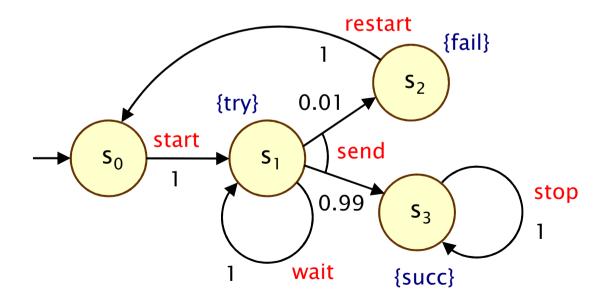
{tails}

{init} a 1

Simple MDP example

· A simple communication protocol

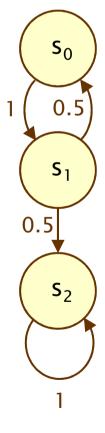
- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart

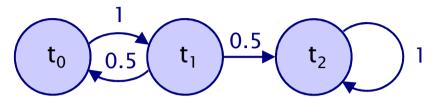


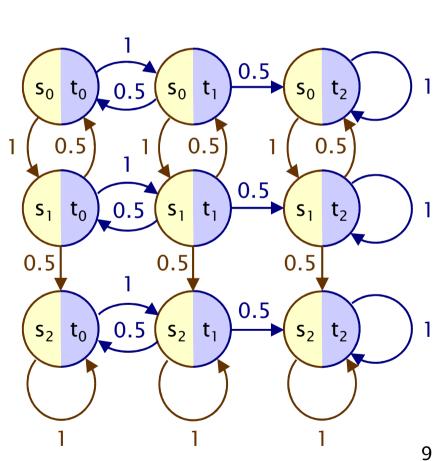
Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here







Paths and probabilities

- A (finite or infinite) path through an MDP M
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$
 - such that $(a_i, \mu_i) \in \delta(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \ge 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
 - note that a path resolves both types of choices: nondeterministic and probabilistic
 - Path_{M,s} (or just Path_s) is the set of all infinite paths starting from state s in MDP M; the set of finite paths is PathFin_s
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "strategies" or "policies"
- Formally:
 - an adversary σ of an MDP is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1...s_n$ to an element of $\delta(s_n)$
- Adversary or restricts the MDP to certain paths
 - $Path_s^{\sigma} \subseteq Path_s^{\sigma}$ and $PathFin_s^{\sigma} \subseteq PathFin_s^{\sigma}$
- Adversary σ induces a probability measure Pr_sσ over paths
 - constructed through an infinite state DTMC (PathFin, o, s, P, o)
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $-\mathbf{P}_{s}^{\sigma}(\omega,\omega')=\mu(s)$ if $\omega'=\omega(a,\mu)s$ and $\sigma(\omega)=(a,\mu)$
 - $-\mathbf{P}_{s}^{\sigma}(\omega,\omega')=0$ otherwise

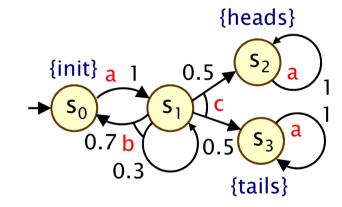
Adversaries – Examples

Consider the simple MDP below

- note that s_1 is the only state for which $|\delta(s)| > 1$
- i.e. s₁ is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions b and c in state s_1

Adversary σ₁

- picks action c the first time
- $\sigma_1(s_0s_1) = (c, \mu_c)$

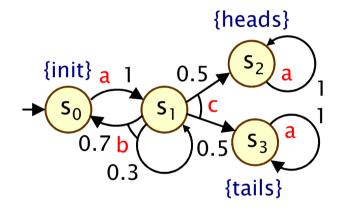


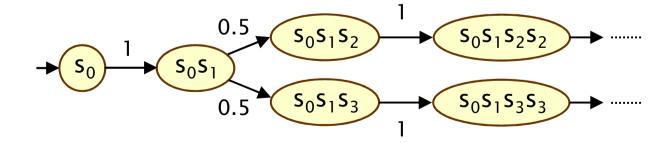
Adversary σ₂

- picks action b the first time, then c
- $-\sigma_2(s_0s_1)=(b,\mu_b), \ \sigma_2(s_0s_1s_1)=(c,\mu_c), \ \sigma_2(s_0s_1s_0s_1)=(c,\mu_c)$

Adversaries – Examples

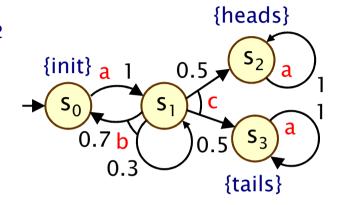
- Fragment of DTMC for adversary σ_1
 - $-\sigma_1$ picks action c the first time

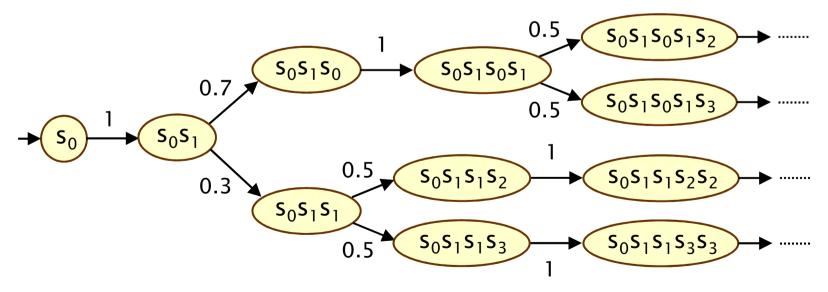




Adversaries - Examples

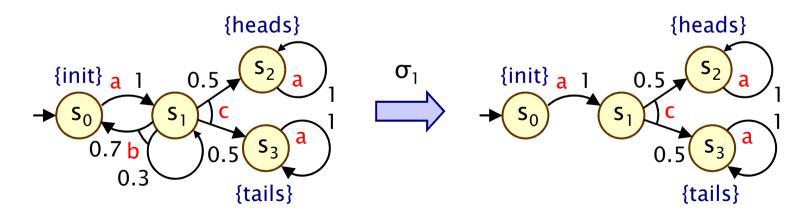
- Fragment of DTMC for adversary σ_2
 - $-\sigma_2$ picks action b, then c





Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: positional, simple, Markov
 - formally, for adversary σ :
 - $-\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - resulting DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless, σ_2 is not



Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- PCTL syntax:
 - $\varphi ::= true \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\neg p} [\psi]$ (state formulas)
 - $\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
 - where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
 - Example: send $\rightarrow P_{>0.95}$ [true U $^{\leq 10}$ deliver]

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the MDP $(S, s_{init}, \alpha, \delta, L)$:

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$- s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \qquad \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

$$-s \models \neg \Phi$$

$$-s \vDash \neg \varphi \Leftrightarrow s \vDash \varphi \text{ is false}$$

- Semantics of path formulas:
 - for a path $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$ in the MDP:

$$-\omega \models X \Phi$$

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$- \omega \models \varphi_1 U^{\leq k} \varphi_2$$

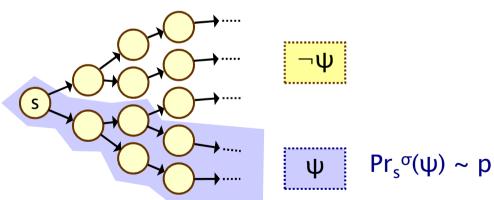
 $-\omega \models \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \text{ such that } s_i \models \varphi_2 \text{ and } \forall j < i, \ s_i \models \varphi_1$

$$-\omega \models \varphi_1 \cup \varphi_2$$

 $-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific adversary σ
 - $-s ⊨ P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies ~p for all adversaries σ"
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all adversaries σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{ \omega \in Path_s^{\sigma} \mid \omega \models \psi \}$



Some equivalences:

$$- F \varphi \equiv \Diamond \varphi \equiv \text{true } U \varphi \quad \text{(eventually, "future")}$$

$$- G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$$
 (always, "globally")

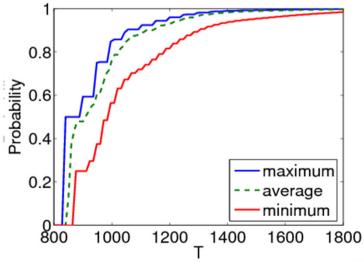
Minimum and maximum probabilities

Letting:

- $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
- $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$
- We have:
 - if ~ ∈ {≥,>}, then s ⊨ $P_{\sim p}$ [ψ] \Leftrightarrow Pr_s^{min} (ψ) ~ p
 - if ~ ∈ {<,≤}, then s ⊨ $P_{\sim p}$ [ψ] \Leftrightarrow Pr_s^{max} (ψ) ~ p
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries σ_{min} and σ_{max} for which:
 - $Pr_s^{\sigma_{min}}(\psi) = Pr_s^{min}(\psi) \text{ and } Pr_s^{\sigma_{max}}(\psi) = Pr_s^{min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}[\psi]$ and $P_{max=?}[\psi]$
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv
- Only change is:
 - $-s \models_{\mathsf{Adv}} \mathsf{P}_{\sim \mathsf{p}} [\psi] \Leftrightarrow \mathsf{Pr}_{\mathsf{s}}^{\,\sigma}(\psi) \sim \mathsf{p} \text{ for all adversaries } \sigma \in \mathsf{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often,
 then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]

Some real PCTL examples

Byzantine agreement protocol

- $-P_{min=?}$ [F (agreement ∧ rounds ≤ 2)]
- "what is the minimum probability that agreement is reached within two rounds?"

CSMA/CD communication protocol

- P_{max=?} [F collisions=k]
- "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $-P_{min=?}$ [$F^{\leq t}$ stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

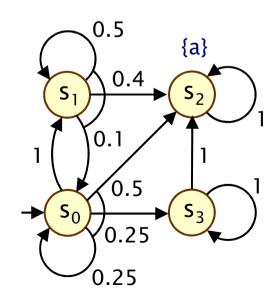
PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s ∈ S | s ⊨ ϕ } = set of states satisfying ϕ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of φ
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ for all $s \in S$
 - dependent on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$
 - these slides cover the case $Pr_s^{min}(\phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X ϕ) and bounded until ($\phi_1 \ U^{\leq k} \ \phi_2$) are straightforward extensions of the DTMC case

PCTL until for MDPs

- Computation of probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration

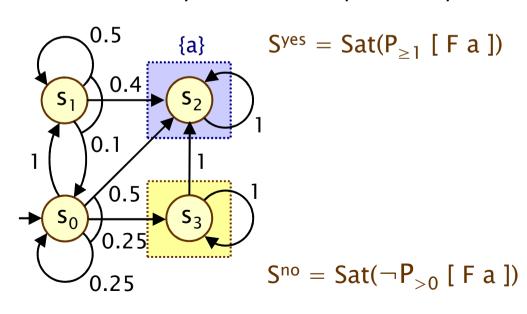
Example: $P_{\geq p} [Fa]$ \equiv $P_{\geq p} [true Ua]$



PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\phi_1 \cup \phi_2)$ is 1 or 0
 - $-S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes S^{no}
 - there exists an adversary for which the probability is 0

Example: $P_{\geq p}$ [F a]



Method 1 – Linear programming

• Probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

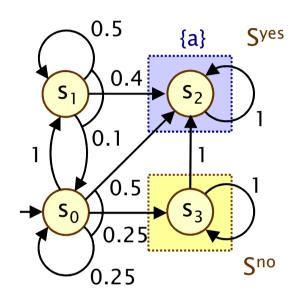
maximize $\sum_{s \in S^?} x_s$ subject to the constraints:

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$$

for all $s \in S^{?}$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Example – PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

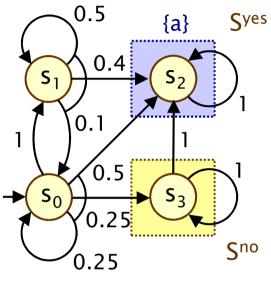
 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

$$x_0 \le x_1$$

$$x_0 \le 0.25 \cdot x_0 + 0.5$$

$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Example - PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

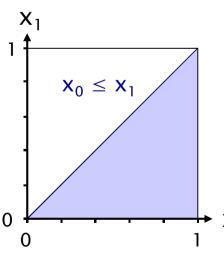
Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

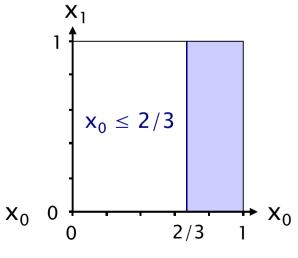
For
$$S^? = \{x_0, x_1\}$$
:

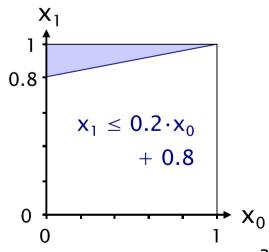
•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

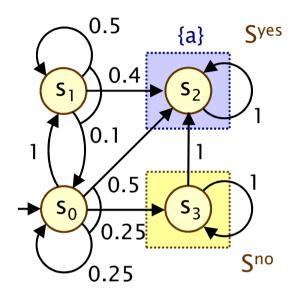
•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$







Example - PCTL until (LP)



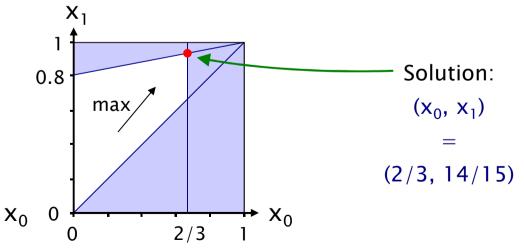
Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 S^{yes} : $x_2=1$, S^{no} : $x_3=0$
For $S^? = \{x_0, x_1\}$:

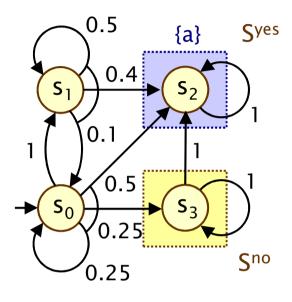
•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$



Example – PCTL until (LP)



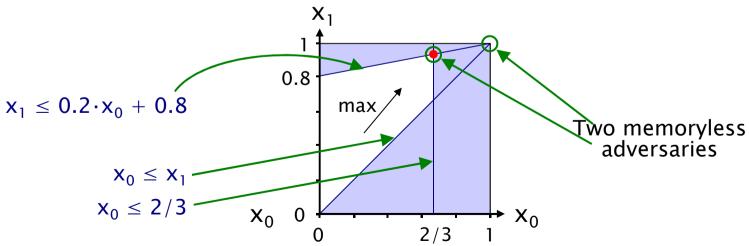
Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 S^{yes} : $x_2 = 1$, S^{no} : $x_3 = 0$
For $S^? = \{x_0, x_1\}$:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$



Method 2 - Value iteration

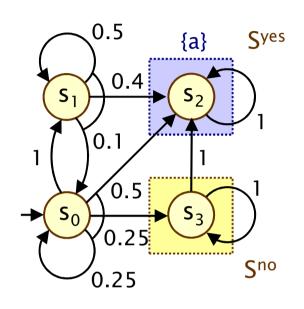
- For probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ it can be shown that:
 - $Pr_s^{min}(\varphi_1 \cup \varphi_2) = Iim_{n\to\infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} & 1 & \text{if } s \in S^{yes} \\ & 0 & \text{if } s \in S^{no} \end{cases}$$

$$x_s^{(n)} = \begin{cases} & 0 & \text{if } s \in S^? \text{ and } n = 0 \\ & \sum_{s' \in S} \mu(s') \cdot x_{s'}^{(n-1)} & \text{if } s \in S^? \text{ and } n > 0 \end{cases}$$

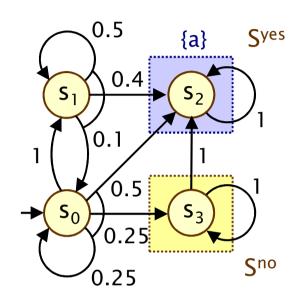
- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

Example - PCTL until (value iteration)



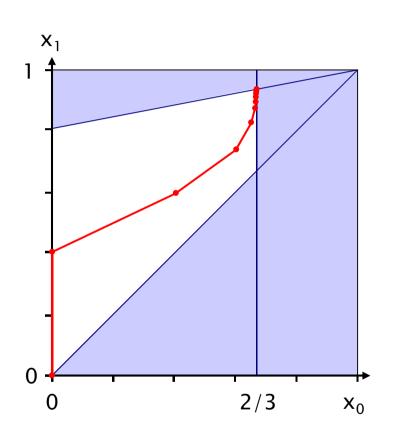
```
Compute: Pr_{si}^{min}(F a)
S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}
            [ X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)} ]
       n=0: [0, 0, 1, 0]
  n=1: [min(0,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0
             = [0, 0.4, 1, 0]
n=2: [ min(0.4,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0
            = [0.4, 0.6, 1, 0]
              n=3: ...
```

Example - PCTL until (value iteration)



```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
        [0.000000, 0.000000, 1, 0]
n=0:
n=1:
        [0.000000, 0.400000, 1, 0]
        [0.400000, 0.600000, 1, 0]
n=2:
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [ 0.650000, 0.830000, 1, 0 ]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [ 0.666406, 0.919688, 1, 0 ]
n=8:
        [0.666602, 0.926484, 1, 0]
n=9:
         [0.666650, 0.929902, 1, 0]
n=20:
        [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Example - Value iteration + LP



```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
         [0.000000, 0.000000, 1, 0]
n=0:
n=1:
         [0.000000, 0.400000, 1, 0]
n=2:
        [ 0.400000, 0.600000, 1, 0 ]
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [ 0.650000, 0.830000, 1, 0 ]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [ 0.666406, 0.919688, 1, 0 ]
n=8:
         [0.666602, 0.926484, 1, 0]
n=9:
         [0.666650, 0.929902, 1, 0]
n=20:
         [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Method 3 - Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries ("policies")
- 1. Start with an arbitrary (memoryless) adversary σ
- 2. Compute the reachability probabilities Pr^{σ} (F a) for σ
- 3. Improve the adversary in each state
- 4. Repeat 2/3 until no change in adversary
- Termination:
 - finite number of memoryless adversaries
 - improvement in (minimum) probabilities each time

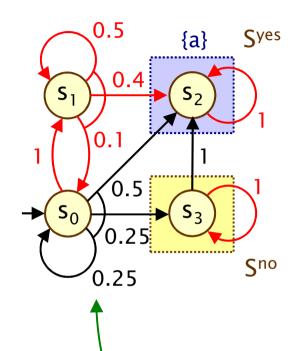
Method 3 - Policy iteration

- 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of $\delta(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $Pr^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

4. Repeat 2/3 until no change in adversary

Example – Policy iteration



Arbitrary adversary o:

Compute: $\underline{Pr}^{\sigma}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = x_1$$

$$\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

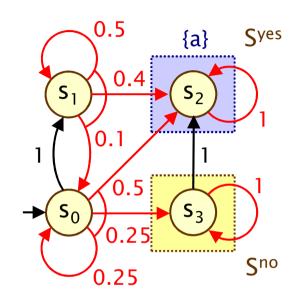
$$Pr^{\sigma}(F a) = [1, 1, 1, 0]$$

Refine σ in state s_0 :

$$min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$$

$$= min\{1, 0.75\} = 0.75$$

Example - Policy iteration



Refined adversary o':

Compute: $\underline{Pr}^{\sigma'}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma'}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

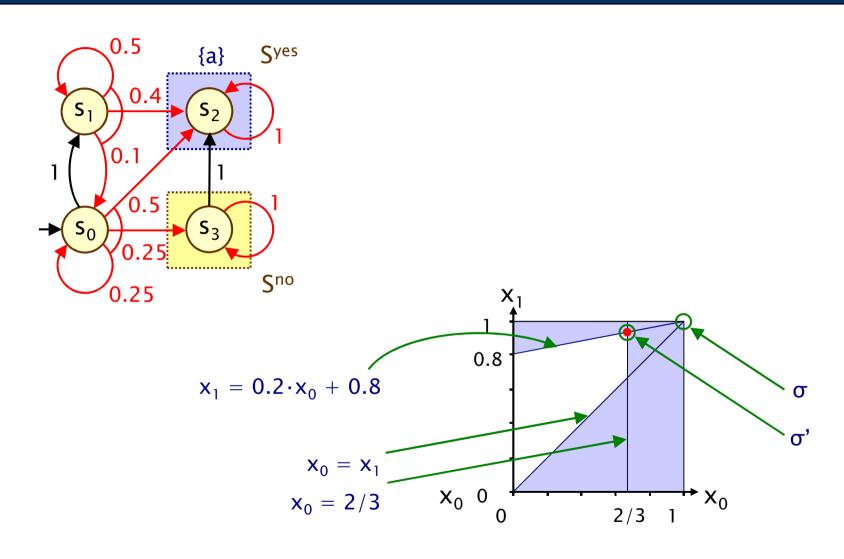
•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$Pr^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$$

This is optimal

Example - Policy iteration



PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - Φ₁ U Φ₂ : linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in $|\Phi|$ and polynomial in |S|
 - S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 - as for PCTL, either R_{r} [...], $R_{min=?}$ [...] or $R_{max=?}$ [...]
- Some examples:
 - $R_{min=?} [I^{=90}], R_{max=?} [C^{\le 60}], R_{max=?} [F "end"]$
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}[\psi]$ against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p}$ [ψ] to $P_{<1-p}$ [$\neg \psi$]
- 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP M⊗A
- 4. Identify accepting end components (ECs) of M⊗A
- 5. Compute max. probability of reaching accepting ECs
 - from all states of the D⊗A
- 6. Compare probability for (s, q_s) against p for each s

LTL model checking for MDPs

- Maximal end components
 - can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- Qualitative LTL model checking
 - no numerical computation: use Prob1E, Prob0A algorithms
- Complexity of model checking LTL formula ψ on MDP M
 - is doubly exponential in $|\Psi|$ and polynomial in |M|
 - unlike DTMCs, this cannot be improved upon
- PCTL* model checking
 - LTL model checking can be adapted to PCTL*, as for DTMCs
- Optimal adversaries for LTL formulae
 - memoryless adversary always exists for $p_{max}(s, GF a)$ and for $p_{max}(s, FG a)$ but not for arbitrary LTL formulae

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Case study: FireWire protocol

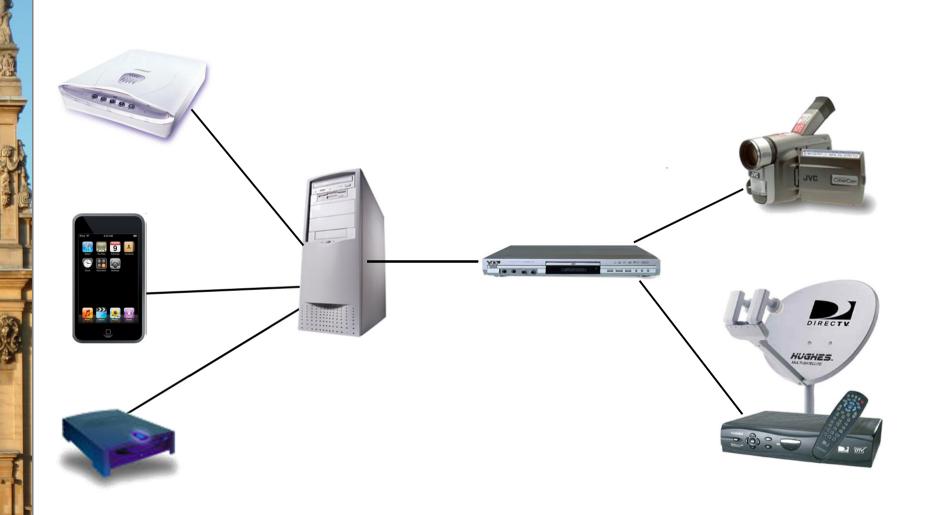
FireWire (IEEE 1394)

- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" add/remove devices at any time

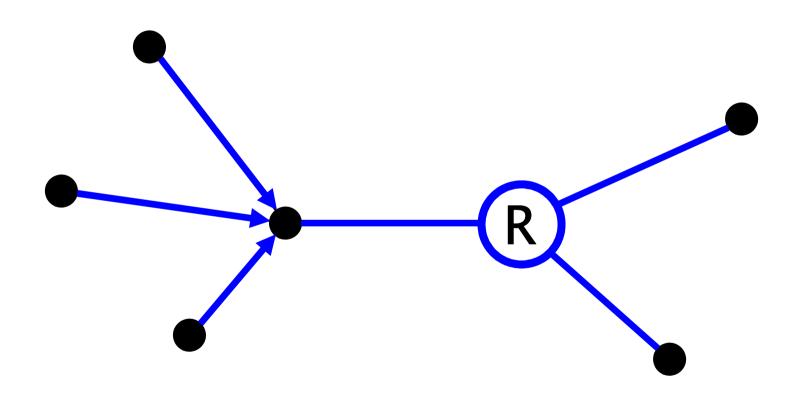
Root contention protocol

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses electronic coin tossing and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

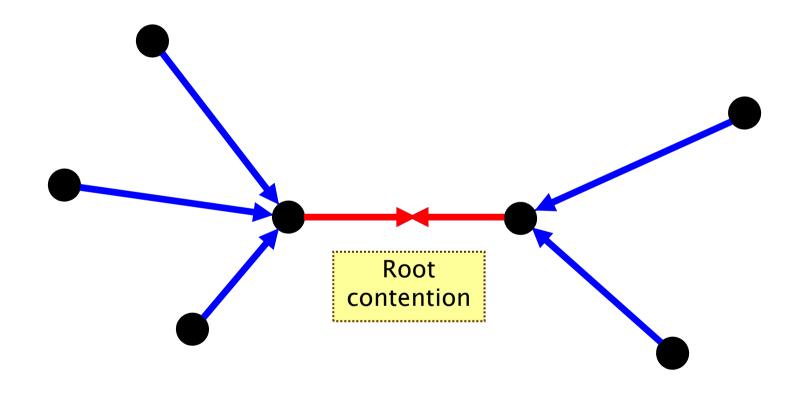
FireWire example



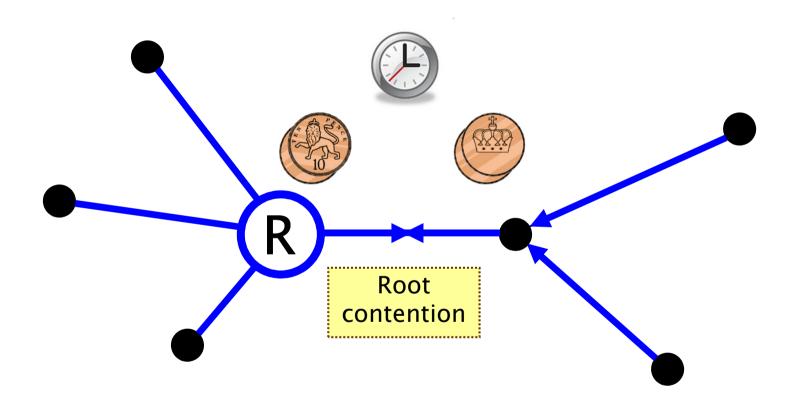
FireWire leader election



FireWire root contention



FireWire root contention



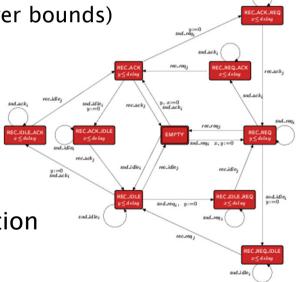
FireWire analysis

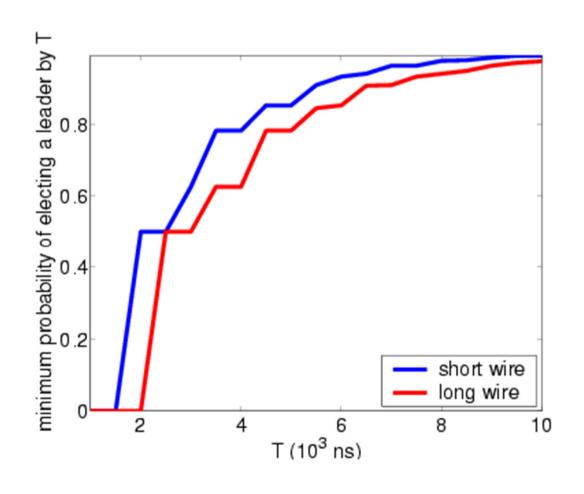
Probabilistic model checking

- model constructed and analysed using PRISM
- timing delays taken from standard
- model includes:
 - · concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
- max. model size: 170 million states

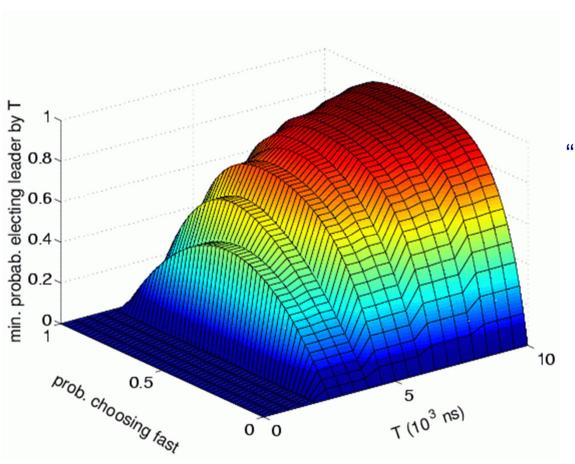
Analysis:

- verified that root contention always resolved with probability 1
- investigated time taken for leader election
- and the effect of using biased coin
 - · based on a conjecture by Stoelinga





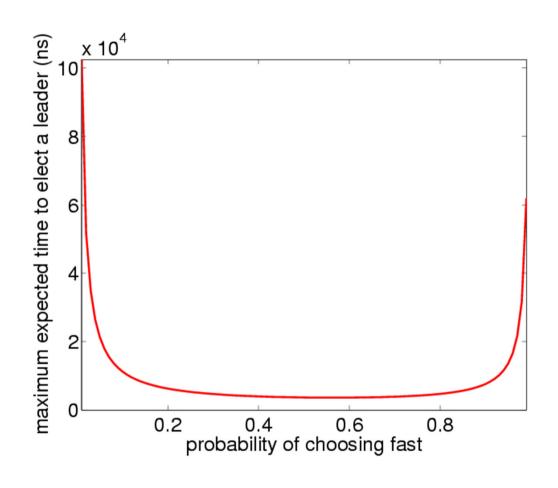
"minimum probability of electing leader by time T"



"minimum probability of electing leader by time T"

(short wire length)

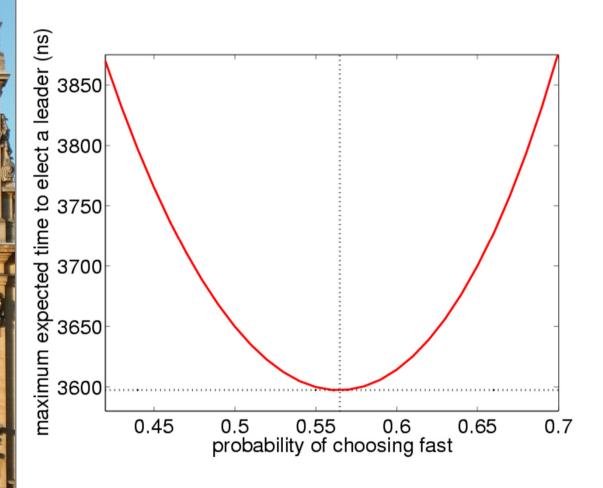
Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin is beneficial!

Summary (Part 2)

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- Adversaries resolve nondeterminism in an MDP
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all adversaries
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration