UNIVERSITY OF

OXFORD

Probabilistic Model Checking

Marta Kwiatkowska

Department of Computer Science, University of Oxford

MOVEP 2012

Part 2

Markov decision processes

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- Properties of MDPs: The temporal logic PCTL
+ PCTL model checking for MDPs

- Case study: Firewire root contention

Recap: Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

— state-transition systems augmented with probabilities
Formally: DTMC D = (S, s,,, P, L) where:

— Sis a set of states and s,,;, € S is the initial state

— P:S xS - [0,1]is the transition probability matrix

— L:S — 2AP |abels states with atomic propositions

— define a probability space Pr_ over paths Path,

Properties of DTMCs
— can be captured by the logic PCTL
— e.g. send — P_, s [F deliver]

— key question: what is the probability
of reaching states T < S from state s?

— reduces to graph analysis + linear equation system

501 lsucc}

Nondeterminism

Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,,;, and d

maxX

Unknown environments
— e.g. probabilistic security protocols - unknown adversary

Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism {heads}

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

Markov decision processes

Formally, an MDP M is a tuple (S,s;;;,®,0,L) where:
— Sis a set of states (“state space”)
— Si,ie € S is the initial state
— o is an alphabet of action labels

— 0 € S X o X Dist(S) is the transition
probability relation, where Dist(S) is the set 0.3 {tails}
of all discrete probability distributions over S

— L:S — 2A%is a labelling with atomic propositions

Notes:
— we also abuse notation and use 6 as a function
— j.e. 8 : S — 20xDist®) where 8(s) = { (a,M) | (s,a,u) € 0}
— we assume 0 (s) is always non-empty, i.e. no deadlocks

— MDPs, here, are identical to probabilistic automata [Segala]
. usually, MDPs take the form: © : S X o — Dist(S)

Simple MDP example

- A simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

Example - Parallel composition

Asynchronous parallel 0.5
composition of two w]
3-state DTMCs

Action labels
omitted here

Paths and probabilities

- A (finite or infinite) path through an MDP M
— is a sequence of states and action/distribution pairs
— e.g. Sp@g,M)s (@, My)s5...
— such that (a;, ;) € 8(s;) and pi(s;,;) > 0 for all i=0

— represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

— note that a path resolves both types of choices:
nondeterministic and probabilistic

— Pathy, ¢ (or just Path,) is the set of all infinite paths starting
from state s in MDP M; the set of finite paths is PathFin,

- To consider the probability of some behaviour of the MDP
— first need to resolve the nondeterministic choices
— ...which results in a DTMC

— ...for which we can define a probability measure over paths 0

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs

- Case study: Firewire root contention

11

Adversaries

- An adversary resolves nondeterministic choice in an MDP
— also known as “schedulers”, “strategies” or “policies”
Formally:
— an adversary o of an MDP is a function mapping every finite

path w = sy(ay,Mg)s;...5,, to an element of d(s,)

- Adversary o restricts the MDP to certain paths

— Path.9 < Path.° and PathFin < PathFin°

- Adversary o induces a probability measure Pr.9 over paths
— constructed through an infinite state DTMC (PathFin.°, s, P.9)
— states of the DTMC are the finite paths of o starting in state s
— initial state is s (the path starting in s of length 0)

— P9 (w,w’)=u(s) if w’= w(a,m)s and o(w)=(a,u)

— P.9 (w,w’)=0 otherwise
12

Adversaries - Examples

- Consider the simple MDP below
— note that s, is the only state for which |d(s)| > 1
— i.e. s, is the only state for which an adversary makes a choice

— let p, and y. denote the probability distributions associated
with actions b and c in state s,

- Adversary o,
— picks action c the first time

— 07(50S7)=(C, M)

- Adversary o,
— picks action b the first time, then c

— 05(5¢S1)=(b,Up), 05(545151)=(C, M), 0,(SS5150S1)=(C, M)

13

Adversaries - Examples

- Fragment of DTMC for adversary o,
— 0, picks action c the first time

14

Adversaries - Examples

- Fragment of DTMC for adversary o, {heads}

— 0, picks action b, then ¢ {init} 5 1 O 5 Q’

Memoryless adversaries

Memoryless adversaries always pick same choice in a state
— also known as: positional, simple, Markov
— formally, for adversary o:
— 0(sp(ag,Mp)S;---S,) depends only on s
— resulting DTMC can be mapped to a |S|-state DTMC

From previous example:
— adversary o, (picks c in s,) is memoryless, 0, is not

16

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs

- Case study: Firewire root contention

17

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
— extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P

— quantitative extension of CTL’s A and E operators

PCTL syntax:

—¢ =truelaldAd|—-|P,[w] (state formulas)
—P = Xd|dUskd|dUD (path formulas)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=2}, k e N

- Example: send — P_;os [true U='0 deliver]

18

PCTL semantics for MDPs

PCTL formulas interpreted over states of an MDP
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the MDP (S,s,,;;,%,0,L):

—SkEa < a e L(s)
—SE O AP, < skE¢, and s E ¢,
— s E —¢ < s E ¢ is false

- Semantics of path formulas:

— for a path w = sy(ay,Mg)s;(a;,M;)S5... in the MDP:
- wEX$ S S, Eo¢
- wkE o, Uskdp, <« dFi<ksuchthats; = P, and Vj<i, s = ¢,

—wE ¢, Ud, < 3k=0 such that w = ¢, Usk ¢,
19

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary o

— s = P_, [@] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all adversaries o’

— formally s=P_[w] < Prop) ~ p for all adversaries o
— where we use Pr.o(p) to denote Pr.°{ w € Path,° | w = @ }

- Some equivalences:
—Fd=0dp=trueUd (eventually, “future”)
—-Gdb=0¢=—-(F) (always, “globally”) 20

Minimum and maximum probabilities

- Letting:

— Pr,max(@) = sup, Pr.o(p)
— Pr,mn(y) = inf; Pr,o(y)

- We have:

—if~e{z,>} thenseP_[w] & Prmn(y) ~p
—if~e{<,slthens=EP_[Y] & Prm>(yp) ~p
- Model checking P_,[@] reduces to the computation over all
adversaries of either:

— the minimum probability of Y holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL on MDPs

— memoryless adversaries suffice, i.e. there are always
memoryless adversaries o, and o, for which:

— Promin(y) = Pr,min(p) and Pr.%max(y) = Pr,min(y)
21

Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): P, [w]land P ., [W]

— i.e. "what is the minimum/maximum probability (over all
adversaries) that path formula p is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pr.min(p) or Pr,m2(y) anyway

1

— useful to spot patterns/trends
0.8
£06
Example: CSMA/CD protocol 3%
Q0
— “min/max probability £ 04,
that a message is sent 0.2l ! —— maximum
1 ~“a\{e_rage
within the deadline” -' — minimum

gOd 1000 1200T1400 1600 1800
22

Other classes of adversary

- A more general semantics for PCTL over MDPs
— parameterise by a class of adversaries Adv

+ Only change is:
— S Fagv Pop [W] = Pro(P) ~ p for all adversaries o € Adv

- Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

. Alternatively, take Adv to be the set of all fair adversaries

— path fairness: if a state is occurs on a path infinitely often,
then each non-deterministic choice occurs infinite often

— see e.g. [BK98]

23

Some real PCTL examples

Byzantine agreement protocol
— P, [F (agreement A rounds<2)]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Pax-> [F collisions=k]
— “what is the maximum probability of k collisions?”

. Self-stabilisation protocols

— P.in_ [FSt stable]

— “what is the minimum probability of reaching a stable state
within k steps?”

24

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- Properties of MDPs: The temporal logic PCTL
+ PCTL model checking for MDPs

- Case study: Firewire root contention

25

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
— inputs: MDP M=(S,s,,;;,x,0,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

Basic algorithm same as PCTL model checking for DTMCs
— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [] formulas

— reduces to computation of Pr,m"(p) or Pr.m2(yp) for all s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case Pr,m"(¢, U ¢,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

— next (X ¢) and bounded until (b, U=k ¢,) are straightforward
extensions of the DTMC case 26

PCTL until for MDPs

- Computation of probabilities Pr,m"(¢, U ¢,) forall s € S
First identify all states where the probability is 1 or O

— “precomputation” algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

Example:
P.,[Fa]

P.,[trueUa]

27

PCTL until - Precomputation

Identify all states where Pr,mn(b, U ¢,)is 1 or 0
— Sves = Sat(P.; [d, U, 1), S"°=Sat(—P_,[P; U,])
- Two graph-based precomputation algorithms:

— algorithm Prob1A computes Syes

. for all adversaries the probability of satisfying ¢, U ¢, is 1
— algorithm ProbOE computes S

. there exists an adversary for which the probability is O

Sves = Sat(P_, [Fa])

Sno = Sat(—=P_.,[Fal) 58

Method 1 - Linear programming

- Probabilities Pr,mn(b, U ¢,) for remaining states in the set
S? =S\ (S¥es U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ZS o X subject to the constraints
X, < D u(s")- X, + D u(s")
s'eS’ s'eSYes

for all s € S” and for all (a, n) € 8(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut

29

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xo = X
° XO < 025X0 + 05
e X1 <0.1-x5+ 0.5:x; + 0.4

30

Example — PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« X9 =<2/3
e X3 =0.2-x,+ 0.8

| xo <2/3 | x;, <0.2-x,
' ' + 0.8

2/3 1 0 1

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« X9 =<2/3
e X3 =0.2-x,+ 0.8

Solution:

|] ma% (XO’ x])

(2/3, 14/15)

2/3 1 32

— PCTL until (LP)

Let x; = Pr,™n(F a)
Sves: x,=1, S"o: x3=0
For S = {Xq, X;}:
Maximise X,+X; subject to constraints:

e Xg < X
e« X9 =<2/3
e X3 =0.2-x,+ 0.8

2,
X; <0.2:xy + 0.8 _ ma%
wo memoryless
/'/' adversaries
XO = X] /
Xg<2/3 X~ 0 — 1 X
° "o 2/3 1 0

33

Method 2 - Value iteration

- For probabilities Pr,m"(¢, U ¢,) it can be shown that:

— Pr,min(, U &,) = lim,_ x.™ where:

-

] ifs e §¥
0 ifse S™
(n)
X, =) 0 ifseS andn=0
min(a,u)eSteps(s) [Z H(S')' XS'(n])J if s e S? andn>0
L s'eS

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

34

Example — PCTL until (value iteration)

Compute: Pr,™n(F a)
Sves = {x,}, Sn° ={x3}, §* = {Xq, X}

[Xo(n)’xl(n)’xz(n)’x3(n)]
n=0: [0,0,1,0]

n=1: [min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4, 1, 0]
=10,0.4,1,0]

2: [min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4, 1, 0]
=[10.4,0.6,1,0]

n=3:

N

35

Example — PCTL until (value iteration)

[XO(”),X1(“),X2(”),X3(“)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

5 3 3 3 3 3 3 3 5 5
I
© XNV R WN 7O

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

S5 S
I
NN
-

36

Example - Value iteration + LP

[XO(”),X1‘“),X2(”),X3‘“)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

|
5 3 3 3 3 3 3 3 5 5
I
© XNV R WN 7O

[0.666667, 0.933332, 1, 0]
[0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

0 2/3 Xo

> S
i
N N
— O

37

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:
— iterates over adversaries (“policies”)

1. Start with an arbitrary (memoryless) adversary o

2. Compute the reachability probabilities Pro (F a) for o
3. Improve the adversary in each state

- 4. Repeat 2/3 until no change in adversary

-« Termination:

— finite number of memoryless adversaries
— improvement in (minimum) probabilities each time

38

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) adversary o
— pick an element of d(s) for each state s € S
- 2. Compute the reachability probabilities Pro(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system
- 3. Improve the adversary in each state

¢ (s) = argmin {Zu(s')- Pro(Fa) | (a,pn) e 8(5)}

s'eS

- 4. Repeat 2/3 until no change in adversary

39

Example - Policy iteration

Arbitrary adversary o:
Compute: Pro(F a)
Let x; = Pr 9(F a)

x,=1, x3=0 and:

* Xo = X

*X; = 0.1-x45 + 0.5:x;, + 0.4
Solution:

Pro(Fa)=1[1,1,1,0]

Refine o in state s;:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

40

Example - Policy iteration

Refined adversary o’:
Compute: Pro'(F a)
Let x; = Pr o (F a)

x,=1, x3=0 and:

* X = 0.25-%, + 0.5

*X; = 0.1-x5 + 0.5-x; + 0.4
Solution:
Pro(Fa)=1[2/3,14/15,1,0]

This is optimal

41

Example - Policy iteration

PCTL model checking - Summary

- Computation of set Sat(®) for MDP M and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X @ : one matrix-vector multiplication, O(|S|?)
— @&, U=k @, : k matrix-vector multiplications, O(k|S|?)

— @, U d, : linear programming problem, polynomial in [S|
(assuming use of linear programming)

- Complexity:

— linear in |®| and polynomial in |S]
— S is states in MDP, assume |d(s)| is constant

43

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

Extend logic PCTL with R operator, for “expected reward”
— as for PCTL, either R_ [...], Rjijns [.- JOor Ry o [.-]
Some examples:
— Ryine? [1729], Riay? [C=90], R_..> [F “end”]
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”
— the maximum expected time for the algorithm to terminate
44

LTL model checking for MDPs

- Model check LTL specification P_,[@ | against MDP M

1. Convert problem to one needing maximum probabilities
— e.g. convertP_, []toP_, [~y]

- 2. Generate a DRA for @ (or =)

— build nondeterministic Biichi automaton (NBA) for ¢ [VW94]
— convert the NBA to a DRA [Saf88]

- 3. Construct product MDP M®A

+ 4. Ildentify accepting end components (ECs) of M®A

- 5. Compute max. probability of reaching accepting ECs
— from all states of the D®A
- 6. Compare probability for (s, gq.) against p for each s

45

LTL model checking for MDPs

Maximal end components

— can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

+ Qualitative LTL model checking

— no numerical computation: use Prob1E, ProbOA algorithms
- Complexity of model checking LTL formula ¢ on MDP M
— is doubly exponential in || and polynomial in [M|

— unlike DTMCs, this cannot be improved upon

PCTL* model checking
— LTL model checking can be adapted to PCTL*, as for DTMCs

- Optimal adversaries for LTL formulae

— memoryless adversary always exists for p,.,(s, GF a)
and for p,...(s, FG a) but not for arbitrary LTL formulae

46

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs

- Case study: Firewire root contention

47

Case study: FireWire protocol

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove
devices at any time

— no requirement for a single PC (need acyclic topology)

S

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses electronic coin tossing and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

48

FireWire example

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

- Probabilistic model checking "N
— model constructed and analysed using PRISM @ mm m
— timing delays taken from standard o
— model includes:
. concurrency: messages between nodes and wires

. underspecification of delays (upper/lower bounds)
— max. model size: 170 million states T

HHHHH

- Analysis:

— verified that root contention always e
resolved with probability 1 h

— investigated time taken for leader election =

— and the effect of using biased coin
. based on a conjecture by Stoelinga

53

FireWire: Analysis results

“minimum probability
of electing leader
by time T’

o
(o))

o
S

== short wire |
- |ong wire

minimum probability of electing a leader by T

2 4 6 8 10
T (10° ns)

54

FireWire: Analysis results

—
S

o
o
/

© ©O
e 2}
i Vi

o
N
Vi

min. probab. electing leader by T

- O
v

“minimum probability
of electing leader
by time T’

(short wire length)

Using a biased coin

55

FireWire: Analysis results

’é‘ x 10
= 10]
QO
@
o
5 g “maximum expected
< time to elect a leader”
2 6
£
T 4
(] .
o (short wire length)
3
o o
= Using a biased coin
E
>
0 I
£ 0.2 0.4 0.6 0.8

probability of choosing fast

56

FireWire: Analysis results

3850

3800 “maximum expected

time to elect a leader”
3750}

3700}
(short wire length)

3 Using a biased coin
151010 N T ———) is beneficiall

maximum expected time to elect a leader (ns)

0.45 0.5 0.55 0.6 0.65 0.7
probability of choosing fast

57

Summary (Part 2)

Markov decision processes (MDPs)
— extend DTMCs with nondeterminism
— to model concurrency, underspecification, ...

. Adversaries resolve nondeterminism in an MDP

— induce a probability space over paths

— consider minimum/maximum probabilities over all
adversaries

Property specifications
— PCTL: exactly same syntax as for DTMCs
— but quantify over all adversaries

Model checking algorithms

— covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

58

