
Static analysis by abstract interpretation
of run-time errors

in synchronous and multithreaded
embedded critical C programs

Antoine Miné

CNRS & École normale supérieure
Paris, France

MOVEP
CIRM, Marseille

4 December 2012

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 1 / 75

Introduction

Motivation: Ariane 5, Flight 501

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 2 / 75

Introduction

Motivation: Ariane 5, Flight 501

40 s after launch. . .

Cause: uncaught exception after overflow in arithmetic overflow

Cost: 370 000 000 US$ [Dowson 97]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 2 / 75

Introduction

Review of verification methods

Testing

well-established method

but no formal warranty, high cost

Formal methods:

Theorem proving

proof essentially manual, but checked automatically

powerful, but very steep learning curve and high human cost

Model checking

checks a model of the program (usually user-specified, finite)

automatic and complete (wrt. model), but often costly

or automatic and incomplete (bounded model-checking)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 3 / 75

Introduction

Review of verification methods

Testing

well-established method

but no formal warranty, high cost

Formal methods:

Theorem proving

proof essentially manual, but checked automatically

powerful, but very steep learning curve and high human cost

Model checking

checks a model of the program (usually user-specified, finite)

automatic and complete (wrt. model), but often costly

or automatic and incomplete (bounded model-checking)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 3 / 75

Introduction

Review of verification methods

Testing

well-established method

but no formal warranty, high cost

Formal methods:

Theorem proving

proof essentially manual, but checked automatically

powerful, but very steep learning curve and high human cost

Model checking

checks a model of the program (usually user-specified, finite)

automatic and complete (wrt. model), but often costly

or automatic and incomplete (bounded model-checking)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 3 / 75

Introduction

Review of verification methods

Static analysis (by abstract interpretation)

can work directly on the source code (not a model)

automatic, always terminating, efficient

parameterized by one/several abstraction(s)

sound (full control and data coverage)

incomplete (properties missed, false alarms)

mostly used to check simple properties,
with low precision requirements (e.g., for optimisation)

Specialized static analyzer for validation

checks for run-time errors (overflow, etc.)

very precise on a chosen class of programs (no false alarm)

gives sound results on all programs

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 4 / 75

Introduction

Review of verification methods

Static analysis (by abstract interpretation)

can work directly on the source code (not a model)

automatic, always terminating, efficient

parameterized by one/several abstraction(s)

sound (full control and data coverage)

incomplete (properties missed, false alarms)

mostly used to check simple properties,
with low precision requirements (e.g., for optimisation)

Specialized static analyzer for validation

checks for run-time errors (overflow, etc.)

very precise on a chosen class of programs (no false alarm)

gives sound results on all programs

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 4 / 75

Introduction

Example static analyzers

Static analyzers checking for run-time errors in C code
developed at ENS (Paris) in Patrick Cousot’s group:

Astrée

targets synchronous embedded real-time critical C code

industrialized by AbsInt

AstréeA

targets multithread embedded real-time C code

research prototype in development

Related industrial tools elsewhere: PolySpace (MathWorks), cccheck

(Microsoft), Sparrow, etc.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 5 / 75

Introduction

Outline

analysis of non-parallel programs

abstract interpretation (in denotational form)

the Astrée analyzer

analysis of multithreaded programs

abstracting interleavings with interferences (parallelism)
weak memory consistency (semantics of data-races)
thread synchronisation (mutexes and priorities)

the AstréeA prototype

limitations and possible extensions

conclusion

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 6 / 75

Static analysis of non-parallel programs

Static analysis of non-parallel programs

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 7 / 75

Static analysis of non-parallel programs Syntax

Simple structured numeric language

Language syntax

stat ::= X ← expr (assignment)
| if expr ./ 0 then stat (conditional)
| while expr ./ 0 do stat (loop)
| stat; stat (sequence)

expr ::= X | [c1, c2] | expr �` expr | · · ·

X ∈ V finite set of variables

` ∈ L syntactic locations (possible errors)

c1, c2 ∈ R, � ∈ {+,−,×, / }, ./∈ {=, >,≥, <,≤}

Idealized language.

All variables are numeric and global. Functions are inlined.
Only possible error: division by zero.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 8 / 75

Static analysis of non-parallel programs Abstract interpretation

Introduction to abstract interpretation

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 9 / 75

Static analysis of non-parallel programs Abstract interpretation

Abstract Interpretation

Abstract Interpretation

General theory of semantic approximation [Cousot Cousot 77,91]

Core principles:

semantics are expressed as fixpoints (lfpF)

semantics are linked through abstractions (α, γ)

abstractions can be composed and reused (abstract domain)

fixpoints can be approximated by iteration with acceleration
(widening O)

Applications:

compare existing semantics (unifying power)

derive new semantics by abstraction
derive computable semantics =⇒ sound static analysis

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 10 / 75

Static analysis of non-parallel programs Abstract interpretation

Static analysis by abstract interpretation

Road-map:

1 collecting concrete semantics lfpF in D
able to observe the properties of interest
(hard to compute: large or infinite # of elements and chains in D)

2 abstract domains

abstract values D]: semantic choice + data-structures
γ : D] → D
abstract functions F]: algorithms + soundness proof
F (γ(X])) ⊆ γ(F](X])

convergence acceleration: O + termination proof

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 11 / 75

Static analysis of non-parallel programs Concrete semantics

Trace-based concrete semantics

Program states: σ ∈ Σ
def
= L × (E ∪ {ω })

a control state in L (finite)

a memory state in E def
= V → R (infinite), or an error ω

initial states: I ⊆ Σ

Transition relation: → ∈ Σ× Σ

Trace semantics T:

set of execution traces, in P(Σ∗)

T
def
= lfp F where

F (T)
def
= I ∪{ 〈σ0, . . . , σn+1〉 | 〈σ0, . . . , σn〉 ∈ T ∧σn → σn+1 }

Computing T is generally undecidable.
(equivalent to exhaustive test)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 12 / 75

Static analysis of non-parallel programs Concrete semantics

State-based concrete semantics

State semantics S:

set of reachable states, in P(Σ)

S
def
= lfpG where G (S)

def
= I ∪ {σ | ∃σ′ ∈ S ∧ σ′ → σ }

The state-semantics is an abstraction of trace semantics

we forget the ordering of states in traces

αstate(T)
def
= {σi | ∃〈σ0, . . . , σn〉 ∈ T ∧ i ∈ [0, n] }

e.g.: αstate({ }) = { }

S = αstate(T)

γstate ◦ G = F ◦ γstate where
γstate(S) = { 〈σ0, . . . , σn〉 | ∀i ∈ [0, n], σi ∈ S }

the abstraction is complete for safety properties

Computing S is undecidable or very costly.
(equivalent to exhaustive state-set exploration)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 13 / 75

Static analysis of non-parallel programs Concrete semantics

Numeric abstract domain

P(Σ) = P(L × (E ∪ {ω })) ' (L → P(E))× P(L)

=⇒ we abstract P(E) ' P(R|V|) further.

concrete sets P(E): {(0, 3), (5.5, 0), (12, 7), . . .}

not computable
polyhedra E]p: 6X + 11Y ≥ 33 ∧ · · · exponential cost
octagons E]o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

intervals E]i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 14 / 75

Static analysis of non-parallel programs Concrete semantics

Numeric abstract domain

P(Σ) = P(L × (E ∪ {ω })) ' (L → P(E))× P(L)

=⇒ we abstract P(E) ' P(R|V|) further.

concrete sets P(E): {(0, 3), (5.5, 0), (12, 7), . . .}

not computable

polyhedra E]p: 6X + 11Y ≥ 33 ∧ · · ·

exponential cost
octagons E]o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

intervals E]i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 14 / 75

Static analysis of non-parallel programs Concrete semantics

Numeric abstract domain

P(Σ) = P(L × (E ∪ {ω })) ' (L → P(E))× P(L)

=⇒ we abstract P(E) ' P(R|V|) further.

concrete sets P(E): {(0, 3), (5.5, 0), (12, 7), . . .}

not computable

polyhedra E]p: 6X + 11Y ≥ 33 ∧ · · ·

exponential cost

octagons E]o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · ·

cubic cost

intervals E]i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 14 / 75

Static analysis of non-parallel programs Concrete semantics

Numeric abstract domain

P(Σ) = P(L × (E ∪ {ω })) ' (L → P(E))× P(L)

=⇒ we abstract P(E) ' P(R|V|) further.

concrete sets P(E): {(0, 3), (5.5, 0), (12, 7), . . .}

not computable

polyhedra E]p: 6X + 11Y ≥ 33 ∧ · · ·

exponential cost

octagons E]o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · ·

cubic cost

intervals E]i : X ∈ [0, 12] ∧ Y ∈ [0, 8]

linear cost

Trade-off between cost and expressiveness / precision

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 14 / 75

Static analysis of non-parallel programs Concrete semantics

Numeric abstract domain

P(Σ) = P(L × (E ∪ {ω })) ' (L → P(E))× P(L)

=⇒ we abstract P(E) ' P(R|V|) further.

concrete sets P(E): {(0, 3), (5.5, 0), (12, 7), . . .} not computable
polyhedra E]p: 6X + 11Y ≥ 33 ∧ · · · exponential cost
octagons E]o : X + Y ≥ 3 ∧ Y ≥ 0 ∧ · · · cubic cost

intervals E]i : X ∈ [0, 12] ∧ Y ∈ [0, 8] linear cost

Trade-off between cost and expressiveness / precision

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 14 / 75

Static analysis of non-parallel programs Abstract interpretation in denotational form

Abstract interpretation in denotational form

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 15 / 75

Static analysis of non-parallel programs Abstract interpretation in denotational form

State-based concrete semantics in denotational form

Expression semantics

EJ expr K : E → (P(R)× P(L))

EJX Kρ def
= 〈 { ρ(X) }, ∅ 〉

EJ [c1, c2] Kρ def
= 〈 { x ∈ R | c1 ≤ x ≤ c2 }, ∅ 〉

EJ e1/` e2 Kρ def
=

let ∀i ∈ { 1, 2 }, 〈Vi , Ωi 〉 = EJ ei Kρ in
〈 { v1/v2 | vi ∈ Vi , v2 6= 0 }, Ω1 ∪ Ω2 ∪ { ` if 0 ∈ V2 } 〉

· · ·

input: memory states E def
= V → R

output:

set of values V ⊆ R (non-determinism)
set of error locations Ω ⊆ L

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 16 / 75

Static analysis of non-parallel programs Abstract interpretation in denotational form

State-based concrete semantics in denotational form

Statement semantics

SJ stat K : D t→ D
(noting 〈Vρ, Ωρ 〉

def
= EJ e Kρ)

SJX ← e K〈R, Ω 〉 def
= 〈 ∅, Ω 〉 t

⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Ωρ 〉

SJ e ./ 0? K〈R, Ω 〉 def
= 〈 ∅, Ω 〉 t

⊔
ρ∈R 〈 { ρ | ∃v ∈ Vρ, v ./ 0 }, Ωρ 〉

SJ if e ./ 0 then s KX def
= (SJ s K ◦ SJ e ./ 0? K)X t SJ e 6./ 0? KX

SJ while e ./ 0 do s KX def
= SJ e 6./ 0? K(lfpλY .X t (SJ s K ◦ SJ e ./ 0? K)Y)

SJ s1; s2 K def
= SJ s2 K ◦ SJ s1 K

D def
= P(E)× P(L), with pointwise join t, order v

SJ stat K defined by structural induction on the syntax
mutate memory states ρ ∈ R ⊆ E
accumulate error locations Ω ⊆ L
complete t−morphism

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 17 / 75

Static analysis of non-parallel programs Abstract interpretation in denotational form

State-based concrete semantics in denotational form

Program semantics

P
def
=
[
SJ prog K〈 E0, ∅ 〉

]
Ω

prog ∈ stat

start form initial memory states E0 ⊆ E
output only error locations, in L

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 18 / 75

Static analysis of non-parallel programs Static analysis

Static analysis as abstract interpretation

Abstract semantics of statements

S]J stat K : D] → D]

S]JX ← e K,S]J e ./ 0? K are given

S]J if e ./ 0 then s KX] def
= (S]J s K ◦ S]J e ./ 0? K)X] t] S]J e 6./ 0? KX]

S]J while e ./ 0 do s KX] def
=

S]J e 6./ 0? K(limλY].Y]O (X] t] (S]J s K ◦ S]J e ./ 0? K)Y]))

S]J s1; s2 K def
= S]J s2 K ◦ S]J s1 K

D] def
= E] × P(L), where E] is a numeric abstract domain.

γD〈E], Ω 〉 def
= 〈 γE(E]), Ω 〉

S]J s K, t] sound abstractions of SJ s K, t:
SJ s K ◦ γ v γ ◦ S]J s K

approximate fixpoint solutions by iteration with widening O

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 19 / 75

Static analysis of non-parallel programs Static analysis

Static analysis as abstract interpretation

Abstract semantics of programs

P]
def
=
[
S]J prog K〈 E]0, ∅ 〉

]
Ω

The analysis is:

effective

defined by structural induction on the program syntax

efficient in memory (parsimonious use of abstract states)

fully flow-sensitive

parametrized by the choice of an abstract domain E]

sound: P ⊆ P]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 20 / 75

Static analysis of non-parallel programs Static analysis

Example domain: the interval domain

E] def
= V → (R ∪ {−∞})× (R ∪ {+∞})

X] ∈ E] maps each variable to a pair of bounds
γE(X])

def
= { ρ ∈ E | ∀V ∈ V, fst(X](V)) ≤ ρ(V) ≤ snd(X](V)) }
(can express absence of arithmetic and array overflow, etc.)

S]JX ← e K: interval arithmetics

S]J e ./ 0? K: box tightening

t]: box hull (keep loosest bounds)

O: set unstable bounds to ±∞ (or use thresholds)

e.g.: [0, 1] O [0, 2] = [0,+∞]

easy to adapt to machine integer and floating-point semantics

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 21 / 75

Static analysis of non-parallel programs Static analysis

The need for relational domains

Example

i ← 0; x ← 0;
while i < 1000000 do

if [0, 1] = 0 then x ← x + [−1, 1];
i ← i + 1

Causes:

approximations accumulate along abstract executions
(the combination of optimal abstract operators is not optimal)

extrapolations O introduce extra approximations

the need to find inductive loop invariants of a complex form
(−i ≤ x ≤ i)

An (infinite) abstract domain works on infinitely many programs
and fails on infinitely many programs!

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 22 / 75

Static analysis of non-parallel programs Astree

Astrée

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 23 / 75

Static analysis of non-parallel programs Astree

Specialized static analyzers

Design by refinement:

focus on a specific family of programs and properties

start with a fast and coarse analyzer (intervals)

while the precision is insufficient (too many false alarms)

add new abstract domains (generic or application-specific)
refine existing domains (better transfer functions)
improve communication between domains (reductions)

=⇒ analyzer specialized for a (infinite) class of programs

efficient and precise

parametric (by end-users, to analyze new programs in the family)

extensible (by developers, to analyze related families)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 24 / 75

Static analysis of non-parallel programs Astree

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

industrialized and made commercially available by AbsInt
(since 2009)

Astrée
www.astree.ens.fr

AbsInt
www.absint.com

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 25 / 75

Static analysis of non-parallel programs Astree

Astrée’s concrete semantics

Concrete semantics source

C99 norm (portable programs)

IEEE 754-1985 norm (floating-point arithmetic)

architecture parameters (sizeof, endianess, struct, etc.)

compiler and linker parameters (initialization, etc.)

Limitations

no dynamic memory allocation

no recursivity

stand-alone programs only (no external libraries)

monolithic analysis (non-modular)

no parallel program

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 26 / 75

Static analysis of non-parallel programs Astree

Astrée’s concrete semantics

Run-time errors

overflows in float, integer, enum arithmetic and cast

division, modulo by 0 on integers and floats

invalid argument of bit-shift

out-of-bound array access

invalid pointer arithmetic or dereferencing

violation of user-specified assertions (assert)

Semantics after an error:

halt the program (out of bound array access)

return a specific value (modulo after arithmetic overflow)

return all values in the type (invalid bit-shift)

=⇒ try to continue the analysis after an alarm
MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 27 / 75

Static analysis of non-parallel programs Astree

Target software

synchronous reactive codes

avionics control/command codes

compiled to C from a graphical language a la Scade / Simulink

Structure

initialize state variables
while (clock ≤ 3600000) {

read input from sensors (volatile)
compute output and new state
write output to actuators
wait for clock tick

}

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 28 / 75

Static analysis of non-parallel programs Astree

Target software

Second order digital filter in Simulink

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 29 / 75

Static analysis of non-parallel programs Astree

Abstract interpreter

syntax iterator
l

trace partitioning domain
l

pointer domain
l

(reduced product of) numerical abstract domains

l l l l
...

intervals octagons decision trees filters . . .
l

intervals

x

y

x

y

x

y

x

y

t

y

· · ·

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 30 / 75

Static analysis of non-parallel programs Astree

Astrée applications

Airbus A340-300 (2003) Airbus A380 (2004)

(model of) ESA ATV (2008)

size: from 70 000 to 860 000 lines of C

analysis time: from 45mn to '40h

alarm(s): 0 (proof of absence of run-time error)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 31 / 75

Static analysis of multithreaded programs

Static analysis of multithreaded programs

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 32 / 75

Static analysis of multithreaded programs

Embedded multithreaded software

Target: embedded multithreaded programs

fixed set of threads (no dynamic creation of thread)

communicating in shared memory

scheduled on a single, mono-core processor

running a real-time OS

Why?

trend to use multithreaded code even in critical applications
(e.g., Integrated Modular Avionics)

testing is not effective on multithreaded programs

interleaving ⇒ combinatorial blow-up of executions
⇒ tests have very low coverage
bugs appear in corner cases (data-races)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 33 / 75

Static analysis of multithreaded programs Control path based semantics

Control path based semantics

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 34 / 75

Static analysis of multithreaded programs Control path based semantics

Control paths

atomic ::= X ← expr | expr ./ 0?

Control paths

π : stat → P(atomic∗)

π(X ← e)
def
= {X ← e }

π(if e ./ 0 then s)
def
= ({ e ./ 0? } · π(s)) ∪ { e 6./ 0? }

π(while e ./ 0 do s)
def
=
(⋃

i≥0({ e ./ 0? } · π(s))i
)
· { e 6./ 0 }?

π(s1; s2)
def
= π(s1) · π(s2)

π(prog) is a (generally infinite) set of finite control paths

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 35 / 75

Static analysis of multithreaded programs Control path based semantics

Path-based concrete semantics of sequential programs

Join-over-all-path semantics

�JP K : D t→ D P ⊆ atomic∗

�JP K〈R, Ω 〉 def
=

⊔
s1·...·sn∈P

(SJ sn K ◦ · · · ◦ SJ s1 K)〈R, Ω 〉

Semantic equivalence

SJ prog K = �Jπ(prog) K
(not true in the abstract)

Advantages:

easily extended to parallel programs (path interleavings)

allows reasoning about local program transformations
(weak memory models)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 36 / 75

Static analysis of multithreaded programs Control path based semantics

Path-based concrete semantics of parallel programs

Finite, fixed set of threads: T def
= { t1, . . . , tn }, prog ti

∈ stat

Parallel control paths

π∗
def
= { interleavings of π(prog t), t ∈ T }
= { p ∈ atomic∗ | ∀t ∈ T , proj t(p) ∈ π(prog t) }

Interleaving program semantics

P∗
def
= [�Jπ∗ K〈 E0, ∅ 〉]Ω

(' sequentially consistent executions [Lamport 79])

Issues:

too many paths to consider exhaustively

no induction structure to iterate on

unrealistic assumptions on granularity and memory consistency

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 37 / 75

Static analysis of multithreaded programs Control path based semantics

Example

Example

E0 : x = y = 0

f : À while 0 = 0 do g : À while 0 = 0 do
Á if x < y then Á if y < 10 then
Â x ← x + 1 Â y ← y + 1

At Á, we have 0 ≤ x ≤ y ≤ 10.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 38 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Abstracting interleavings as interferences

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 39 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Detour to rely/guarantee proof methods

checking f

À while true do x unchanged
Á if x < y then y incremented
Â x ← x + 1 y ≤ 10

checking g

x unchanged À while true do
y unchanged Á if y < 10 then

Â y ← y + 1

invariant at Á: 0 ≤ x ≤ y ≤ 10

Modular proof method [Jones 81]

Annotate programs with:

local invariants

rely and guarantee on transitions

For each thread, prove that:

local and guarantee hold

using rely

rely/guarantee act as thread interfaces (abstraction)

How do we infer instead of relying on annotations?

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 40 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Concrete denotational semantics

Interferences in I def
= T × V × R

〈 t, X , v 〉 means: t can store the value v into the variable X

Interference program semantics

EIJX Kt〈 ρ, I 〉
def
= { ρ(X) } ∪ { v | ∃t ′ 6= t, 〈 t ′, X , v 〉 ∈ I }

SIJX ← e Kt〈R, Ω, I 〉 def
=

〈 ∅, Ω, I 〉 t
⊔
ρ∈R 〈 { ρ[X 7→ v] | v ∈ Vρ }, Ωρ, { 〈 t, X , v 〉 | v ∈ Vρ } 〉

where 〈Vρ, Ωρ 〉 = EIJ e Kt〈 ρ, I 〉

PI
def
=
[

lfp λ〈Ω, I 〉.
⊔

t∈T [SIJ prog t Kt〈 E0, ∅, I 〉]Ω,I

]
Ω

EI , SI use and enrich I ⊆ I
threads are re-analyzed until interferences I stabilize (lfp)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 41 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Example

Example

E0 : x = y = 0

f : À while 0 = 0 do g : À while 0 = 0 do
Á if x < y then Á if y < 10 then
Â x ← x + 1 Â y ← y + 1

Concrete interference semantics:

iteration 1
I = ∅
Á : x = 0, y = 0
Á : x = 0, y ∈ [0, 10]
new I = { 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 42 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Example

Example

E0 : x = y = 0

f : À while 0 = 0 do g : À while 0 = 0 do
Á if x < y then Á if y < 10 then
Â x ← x + 1 Â y ← y + 1

Concrete interference semantics:

iteration 2
I = { 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }
Á : x ∈ [0, 10], y = 0
Á : x = 0, y ∈ [0, 10]
new I = { 〈 f , x , 1 〉, . . . , 〈 f , x , 10 〉, 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 42 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Example

Example

E0 : x = y = 0

f : À while 0 = 0 do g : À while 0 = 0 do
Á if x < y then Á if y < 10 then
Â x ← x + 1 Â y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 f , x , 1 〉, . . . , 〈 f , x , 10 〉, 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }
Á : x ∈ [0, 10], y = 0
Á : x = 0, y ∈ [0, 10]
new I = { 〈 f , x , 1 〉, . . . , 〈 f , x , 10 〉, 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 42 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Example

Example

E0 : x = y = 0

f : À while 0 = 0 do g : À while 0 = 0 do
Á if x < y then Á if y < 10 then
Â x ← x + 1 Â y ← y + 1

Concrete interference semantics:

iteration 3
I = { 〈 f , x , 1 〉, . . . , 〈 f , x , 10 〉, 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }
Á : x ∈ [0, 10], y = 0
Á : x = 0, y ∈ [0, 10]
new I = { 〈 f , x , 1 〉, . . . , 〈 f , x , 10 〉, 〈 g , y , 1 〉, . . . , 〈 g , y , 10 〉 }

Note: we don’t get that x ≤ y at Á, only that x , y ∈ [0, 10]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 42 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Soundness of the interference semantics

Soundness theorem

P∗ ⊆ PI

Proof sketch:

define �IJP KtA
def
=
⊔
{SIJ s1; . . . ; sn KA | s1 · . . . · sn ∈ P };

then �IJπ(s) Kt = SIJ s Kt ;

given the interference fixpoint I ⊆ I from PI ,
prove by recurrence on the length of p ∈ π∗ that:

∀t ∈ T ,∀ρ ∈ [�J p K〈 E0, ∅ 〉]E ,
∃ρ′ ∈ [�IJ proj t(p) Kt〈 E0, ∅, I 〉]E such that
∀X ∈ V, ρ(X) = ρ′(X) or 〈 t ′, X , ρ(X) 〉 ∈ I for some t ′ 6= t.

[�J p K〈 E0, ∅ 〉]Ω ⊆
⋃

t∈T [�IJ proj t(p) Kt〈 E0, ∅, I 〉]Ω

Note: sound but not complete

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 43 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Interference abstraction

Abstract interferences I]

P(I)
def
= P(T × V × R) is abstracted as I] def

= (T × V)→ N]

where N] abstracts P(R) (e.g. intervals)

Abstract semantics with interferences S]IJ s K

derived from S] in a generic way:

Example: S]IJX ← e Kt〈R], Ω, I] 〉

for each Y in e, get its interference Y]
N =

⊔]
N { I]〈 t ′, Y 〉 | t ′ 6= t }

if Y]
N 6= ⊥

]
N , replace Y in e with get〈Y , R] 〉 t]N Y]

N

compute 〈R]′, Ω′ 〉 = S]J e K〈R], Ω 〉

enriches I]〈 t, X 〉 with get(X ,R]′)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 44 / 75

Static analysis of multithreaded programs Abstracting interleavings as interferences

Static analysis with interferences

Abstract analysis

P]I
def
=[
limλ〈Ω, I] 〉. 〈Ω, I] 〉O

⊔]
t∈T

[
S]IJ prog t Kt〈 E]0, ∅, I] 〉

]
Ω,I]

]
Ω

effective analysis by structural induction

termination ensured by a widening

parametrized by a choice of abstract domains N], E]

interferences are flow-insensitive and non-relational in N]

thread analysis remains flow-sensitive and relational in E]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 45 / 75

Static analysis of multithreaded programs Weak memory consistency

Weak memory consistency

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 46 / 75

Static analysis of multithreaded programs Weak memory consistency

Issues with weak consistency

program written

E0 : F1 = F2 = 0

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→

program executed

E0 : F1 = F2 = 0

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 cannot execute simultaneously.

Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Manson al. 05]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 47 / 75

Static analysis of multithreaded programs Weak memory consistency

Issues with weak consistency

program written

E0 : F1 = F2 = 0

F1 ← 1; F2 ← 1;
if F2 = 0 then if F1 = 0 then
S1 S2

−→

program executed

E0 : F1 = F2 = 0

if F2 = 0 then if F1 = 0 then
F1 ← 1; F2 ← 1;
S1 S2

(simplified Dekker mutual exclusion algorithm)

S1 and S2 can execute simultaneously.
Not a sequentially consistent behavior!

Caused by:

write FIFOs, caches, distributed memory

hardware or compiler optimizations, transformations

. . .

behavior accepted by Java [Manson al. 05]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 47 / 75

Static analysis of multithreaded programs Weak memory consistency

Out of thin air principle

original program

E0 : R1 = R2 = X = Y = 0

R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

−→

“optimized” program

E0 : R1 = R2 = X = Y = 0

Y ← 42;
R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 48 / 75

Static analysis of multithreaded programs Weak memory consistency

Out of thin air principle

original program

E0 : R1 = R2 = X = Y = 0

R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

−→

“optimized” program

E0 : R1 = R2 = X = Y = 0

Y ← 42;
R1 ← X ; R2 ← Y ;
Y ← R1 X ← R2

(example from causality test case #4 for Java by Pugh et al.)

We should not have R1 = 42.

Possible if we allow speculative writes!
=⇒ we disallow this kind of program transformations.

(also forbidden in Java)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 48 / 75

Static analysis of multithreaded programs Weak memory consistency

Path-based definition of weak consistency

Acceptable control path transformations: p q

only reduce interferences and errors

Reordering: X1 ← e1 · X2 ← e2 X2 ← e2 · X1 ← e1

(if X1 /∈ var(e2), X2 /∈ var(e1), and e1 does not stop the program)

Propagation: X ← e · s X ← e · s[e/X]
(if X /∈ var(e), var(e) are thread-local, and e is deterministic)

Factorization: s1 · . . . · sn X ← e · s1[X/e] · . . . · sn[X/e]
(if X is fresh, ∀i , var(e) ∩ lval(si) = ∅, and e has no error)

Decomposition: X ← e1 + e2 T ← e1 · X ← T + e2

(change of granularity)

. . .

but NOT:

“out-of-thin-air” writes: X ← e X ← 42 · X ← e

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 49 / 75

Static analysis of multithreaded programs Weak memory consistency

Soundness of the interference semantics

Interleaving semantics of transformed programs P′∗

π′(s)
def
= { p | ∃p′ ∈ π(s), p′ ∗ p }

π′∗
def
= { interleavings of π′(prog t), t ∈ T }

P′∗
def
= [�Jπ′∗ K〈 E0, ∅ 〉]Ω

Soundness theorem

P′∗ ⊆ PI

=⇒ the interference semantics is sound
wrt. weakly consistent memories

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 50 / 75

Static analysis of multithreaded programs Synchronization

Synchronization

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 51 / 75

Static analysis of multithreaded programs Synchronization

Scheduling

Synchronization primitives

stat ::= lock(m)
| unlock(m)
| X ← islocked(m)
| yield

m ∈M : finite set of non-recursive mutexes
threads t1, . . . , tn have fixed, distinct priorities

Real-time scheduling

only the highest priority unblocked thread can run

lock and yield may block

yielding threads wake up non-deterministically
(preempting lower-priority threads)

explicit synchronisation enforces memory consistency

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 52 / 75

Static analysis of multithreaded programs Synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Interleaving semantics P∗:

restrict interleavings of control paths

Interference semantics PI , P]I :

partition wrt. an abstract local view of the scheduler C
E E × C, E] C → E]

I def
= T × V × R I def

= T × C × V × R,
I] def

= (T × V)→ N] I] def
= (T × C × V)→ N]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 53 / 75

Static analysis of multithreaded programs Synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

lock(m) unlock(m)

p2

p1

Data-race effects

Partition wrt. mutexes M ⊆M held by the current thread t

SIJX ← e Kt〈 ρ, M, I 〉 adds
{ 〈 t, M, X , v 〉 | v ∈ EIJX Kt〈 ρ, M, I 〉 } to I

EIJX Kt〈 ρ, M, I 〉 =
{ ρ(X) } ∪ { v | 〈 t ′, M ′, X , v 〉 ∈ I , t 6= t ′, M ∩M ′ = ∅ }
flow-insensitive, subject to weak memory consistency

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 53 / 75

Static analysis of multithreaded programs Synchronization

Mutual exclusion

WW W

R RWR

lock(m) unlock(m)

p1

p2

lock(m) unlock(m)

Well-synchronized effects

last write before unlock affects first read after lock

partition interferences wrt. a protecting mutex m (and M)

SIJ unlock(m) Kt〈 ρ, M, I 〉 stores all ρ(X) into I

SIJ lock(m) Kt〈 ρ, M, I 〉 imports values form I into ρ

imprecision: non-relational, largely flow-insensitive

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 53 / 75

Static analysis of multithreaded programs Synchronization

Example analysis

abstract consumer/producer

E0 : X = 1

p1: p2:
while 1 do while 1 do

lock(m);1 lock(m);
if X > 0 then 2X ← X − 1; X ← X + 1;
unlock(m); if X > 10 then X ← 10;
3Y ← X unlock(m)

at 1 the unlock− lock effect from p2 imports {X} × [1, 10]

at 2 X ∈ [1, 10], no effect from p2: X ← X − 1 is safe

at 3 X ∈ [0, 9], and p2 has the effects {X} × [1, 10]
so, Y ∈ [0, 10]

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 54 / 75

Static analysis of multithreaded programs Synchronization

Real-time scheduling

priority-based critical sections

high thread low thread

L← islocked(m); lock(m);
if L = 0 then Z ← Y ;
Y ← Y + 1; Y ← 0;
yield unlock(m)

Partition interferences and memory states wrt. scheduling state

partition wrt. mutexes tested with islocked

L← islocked(m) creates two partitions
P0 where L = 0 and m is free
P1 where L = 1 and m is locked

P0 handled as if m where locked

blocking primitives merge P0 and P1 (lock, yield)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 55 / 75

Static analysis of multithreaded programs AstreeA

AstréeA

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 56 / 75

Static analysis of multithreaded programs AstreeA

AstréeA project

Goal: Astrée for asynchronous programs

Target programs: large embedded avionic C software

Model: ARINC 653 real-time operating system

several concurrent threads, one a single processor

shared memory (implicit communications)

synchronisation primitives (mutexes)

real-time scheduling (priority-based)

fixed set of threads and mutexes, fixed priorities

no dynamic memory allocation, no recursivity

We compute all run-time errors in a sound way:

classic C run-time errors (overflows, invalid pointers, etc.)

data-races (report & factor in the analysis)

but NOT deadlocks, livelocks, priority inversions (yet!)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 57 / 75

Static analysis of multithreaded programs AstreeA

The AstréeA prototype

Prototype:

started in 2009

based on the Astrée code-base

additions:

support for multithreaded programs
checks for data-races
new or improved abstract domains
added flexibility and scalability
improved iteration strategies

Website

http://www.astreea.ens.fr

work in progress

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 58 / 75

Static analysis of multithreaded programs AstreeA

Abstract interpreter

thread iterator
l

syntax iterator
l

trace partitioning domain
l

scheduler partitioning domain
l

memory domain
l ↑

interference domain
...

l ↓
pointer domain

l
(reduced product of) numerical abstract domains

l l l l
...

intervals octagons decision trees filters . . .

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 59 / 75

Static analysis of multithreaded programs AstreeA

Target system

embedded avionic code

1.6 Mlocs of C, 15 threads

many variables, large arrays, many loops

reactive code + network code + lists, strings. pointers

initialization phase, followed by a multithreaded phase

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 60 / 75

Static analysis of multithreaded programs AstreeA

Target system

Operating system:

ARINC 653 OS specification

model hand-written based on documentation
in C + low-level analyzer primitives (2.6 Klines)

Memory consistency: conservative model

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 61 / 75

Static analysis of multithreaded programs AstreeA

Analysis results

Analysis on our intel 64-bit 2.66 GHz server, 64 GB RAM.

Analysis results

lines # threads # iters. time # alarms

100 K 5 4 46 mn 64
1.6 M 15 6 43 h 1 208

efficiency on par with analyses of synchronous code

few thread reanalyses

few partitions (up to 4 for memory states, 52 for interferences)

but still too many alarms

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 62 / 75

Static analysis of multithreaded programs Limitations of the interference abstraction

Limitations of the interference abstraction

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 63 / 75

Static analysis of multithreaded programs Limitations of the interference abstraction

Lack of relational lock invariants

a difficult example

E0 : X = Y = 5

while 1 do while 1 do
lock(m); lock(m);
if X > 0 then if X < 10 then

X ← X − 1; X ← X + 1;
Y ← Y − 1; Y ← Y + 1;

unlock(m) unlock(m)

Our analysis finds X ∈ [0, 10], but no bound on Y .

Actually Y ∈ [0, 10].

To prove this, we would need to infer the relational invariant
X = Y at lock boundaries.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 64 / 75

Static analysis of multithreaded programs Limitations of the interference abstraction

Lack of inter-process flow-sensitivity

a more difficult example

E0 : X = 0

while 1 do while 1 do
lock(m); lock(m);
X ← X + 1; X ← X + 1;
unlock(m); unlock(m);
lock(m); lock(m);
X ← X − 1; X ← X − 1;
unlock(m) unlock(m)

Our analysis finds no bound on X .

Actually X ∈ [−2, 2] at all program points.
To prove this we need to infer an invariant on
the history of interleaved executions:
no more than two incrementation (resp. decrementation) can
occur without a decrementation (resp. incrementation).

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 65 / 75

Static analysis of multithreaded programs Towards more general interferences

Towards more general interferences

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 66 / 75

Static analysis of multithreaded programs Towards more general interferences

Reminder: from traces to sequential analyses

abstract states
S
] ∈ L → E]

(abstract invariants)

 implementable
data-structures + algorithms

states

S ∈ P(L × E)

αval

OO

(invariants)

execution traces

T ∈ P((L × E)∗)

αstate

OO

mathematical
non-computable

T
def
= lfpλT . I ∪ { 〈σ0, . . . , σn+1〉 | 〈σ0, . . . , σn〉 ∈ T ∧ σn → σn+1 }

S
def
= lfpλS . I ∪ {σ | ∃σ′ ∈ S ∧ σ′ → σ } = αstate(T)

where αstate(T)
def
= {σi | ∃〈σ0, . . . , σn〉 ∈ T ∧ i ∈ [0, n] }

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 67 / 75

Static analysis of multithreaded programs Towards more general interferences

Interleaved traces

States:

thread state: for each t ∈ T , Σt
def
= Lt × E

program state: Σ
def
= (

∏
t∈T Lt)× E

Labelled transition relation:
·→ ∈ Σ× T × Σ

Labelled trace semantics:

T
def
= lfpF where

F (T)
def
= I∪{σ0

t0→ · · · ti→ σi+1 |σ0
t0→ · · · ti−1→ σi ∈ T∧σi

ti→ σi+1 }

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 68 / 75

Static analysis of multithreaded programs Towards more general interferences

Interleaved trace abstraction

Complementary abstractions:

thread-local states: St
def
= πt(αstate(T)) ∈ P(Lt × Σ′)

πt(`, ρ)
def
= (`t , ρ[∀t ′ 6= t, pct′ 7→ `t′])

(inter-thread flow-sensitive state, with auxiliary variables)

interferences: At
def
= { (σi , σi+1) | ∃ · · ·σi

t→ σi+1 · · · ∈ T }
(relational flow-sensitive interferences)

Nested fixpoint form:

St = lfp Gt where

Gt(S)
def
= lfp Ht(λt ′. { (σ, σ′) |σ ∈ St′ , σ

t′→ σ′ })
Ht(A)(S)

def
= πt(I ∪{σ′ | ∃πt(σ) ∈ S , σ

t→ σ′ ∨∃t ′ 6= t, (σ, σ′) ∈ At′ })

The abstraction S is complete for safety properties.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 69 / 75

Static analysis of multithreaded programs Towards more general interferences

From traces to thread-modular analyses

abstract states∏
t Lt → E]

abstract interferences∏
t E

]

static analyzer

non-relational interferences

∏
t P(E)

αval

OO

local states

∏
t P(Lt × E)

αval

OO

flow-insensitive interferences

∏
t P(E × E)

αCart

OO

rely/guarantee
(without aux. variables)

local states

S ∈
∏

t P(Lt ×
∏

t′ 6=t Lt × E)

αaux

OO

interferences

A ∈ P((
∏

t Lt × E)× (
∏

t Lt × E))

αflow

OO

rely/guarantee
(with aux. variables)

αstate

OO
αintf

OO

interleaved execution traces concrete executions
T ∈ P((

∏
t Lt × E)∗)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 70 / 75

Conclusion

Conclusion

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 71 / 75

Conclusion

Conclusion

A method to analyze embedded real-time multithreaded programs
that:

is sound for all interleavings

is sound for weakly consistent memory semantics

takes scheduling and synchronization into account

is parametrized by abstract domains

can benefit directly from existing non-parallel analyzers

is efficient (on par with non-parallel analysis)

Encouraging experimental results.

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 72 / 75

Conclusion

Related work

Huge body of work on parallel programs, models & analysis!

Main inspirations:

proofs of parallel programs [OwickiGries76, Lamport77]

decomposition: thread-local invariant + global interference

abstract interpretation
formalizing the proof methods [CousotCousot84]

recent static analysis applications [Ferrara08, CarréHymans09]

Other works:

flow-insensitive analyses [Steensgaard96]

naturally handle parallelism, but low precision

model-checking: considers interleavings explicitly
partial-order reduction (complete) [Godefroid94]

bounded context switches (unsound) [QadeerRehof05]

weak memory consistency
hardware [Lamport79, AdveGharachorloo96]

language [MansonPughAdve05] (Java), [SaraswatAl07] (generative)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 73 / 75

Conclusion

Future work

Goal: zero alarm

Planned improvements:

relational analysis of interferences
(well-synchronized effects protected by mutexes)

history-sensitive abstractions (ordering of critical sections)

additional synchronisation primitives (events)

additional priority policies (priority ceiling)

other operating systems (OSEK/VDX, AUTOSAR, POSIX)

refined weakly consistent memory models (atomic volatile)

application-specific abstract domains (lists, strings)

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 74 / 75

Conclusion

Questions?

Want to work on AstréeA?

Post-doc positions available!

MOVEP — 4 December 2012 Static analysis by abstract interpretation Antoine Miné p. 75 / 75

	Introduction
	Static analysis of non-parallel programs
	Syntax
	Abstract interpretation
	Concrete semantics
	Abstract interpretation in denotational form
	Static analysis
	Astrée

	Static analysis of multithreaded programs
	Control path based semantics
	Abstracting interleavings as interferences
	Weak memory consistency
	Synchronization
	AstréeA
	Limitations of the interference abstraction
	Towards more general interferences

	Conclusion

