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Kleene’s Theorem

Finite State Automata

Regular Expressions

same expressivity

E ::=     a | E+E | E·E | E*
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Motivations

• Theoretically: relate denotational and computational 
models

• Practically: easier to write specifications using regular 
expressions vs. easier to check properties 
(emptiness, inclusion...) with automata

• Goal: translate expressions to automata, as efficiently 
as possible
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Kleene’s Theorem

Finite State Automata

Regular Expressions

same expressivity

Weighted

E ::=     a | E+E | E·E | E*
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Kleene’s Theorem

Finite State Automata

Regular Expressions

same expressivity

Weighted

E ::=     a | E+E | E·E | E*

a  a  b
two runs: 
1→2→1→3 of weight 1/6x1x1x1=1/6 
and 1→1→1→3 of weight 1/2x1/2x1x1=1/4
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Kleene’s Theorem

Finite State Automata

Regular Expressions

same expressivity

Schützenberger

Weighted

Weighted

E ::=     a | E+E | E·E | E*
E properp |

[1] S. Kleene (1956). Representation of events in nerve nets and finite automata.
[2] M.-P. Schützenberger (1961). On the Definition of a Family of Automata. Information and Control.
For an overview about Weighted Automata, see, e.g., Handbook of Weighted Automata. Editors: Manfred Droste, 
Werner Kuich, and Heiko Vogler. EATCS Monographs in Theoretical Computer Science. Springer, 2009.
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Probabilistic case?

A = (Q, ι,Acc,P)
P : Q× Σ×Q → [0, 1]

Acc(q) +
X

q02Q

P(q, a, q0)  1 for all (q, a) 2 Q ⇥ A
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Probabilistic case?

Reactive Probabilistic 

Finite Automata

A = (Q, ι,Acc,P)
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Probabilistic case?
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Reactive Probabilistic 

Finite Automata

A = (Q, ι,Acc,P)
P : Q× Σ×Q → [0, 1]

Acc(q) +
X

q02Q

P(q, a, q0)  1 for all (q, a) 2 Q ⇥ A
Applying Schützenberger’s Theorem 

over these special Weighted Automata, 

we obtain regular expressions (proper)
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What kind of expressions?
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Constructing Probabilistic Expressions
How to iterate?
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Constructing Probabilistic Expressions
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Not a valid Probabilistic 
Automaton anymore 
(acceptance condition 
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Constructing Probabilistic Expressions
How to iterate?

Keep some branch for 
termination of the 

Probabilistic Automaton1
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Probabilistic Expressions

• Closure of PRE under commutativity of +, 
associativity of + and ·, distributivity of · over +
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Probabilistic Expressions

• Closure of PRE under commutativity of +, 
associativity of + and ·, distributivity of · over +

• a∈A and p∈[0,1] are PREs

• if (Ea)a∈A are PREs, then ∑a∈A a·Ea is a PRE

• if E and F are PREs, then p·E + (1-p)·F is a PRE

• if E and F are PREs, then E·F is a PRE

• if E+F is a PRE, then E*·F is a PRE

(a·E)*·b·F
(p·E)*·(1-p)·F

Semantics given as a fragment of regular 
expressions in complete semirings...
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Probabilistic Kleene-
Schützenberger Theorem

• Every PRE can be translated into an 
equivalent Probabilistic automaton.

• Every Probabilistic automaton can be 
denoted by an equivalent PRE.



From Automata to Expressions

• Usual procedures (Brozozwski-McCluskey, 
elimination, McNaughton-Yamada...) keeping 
probabilistic constraints in mind

• Requires to prove some (useful) properties of PREs, 
e.g., if E+F and G are PREs, then E+F·G is a PRE 

[1] J. A. Brzozowski and E. J. McCluskey (1963). Signal Flow Graph Techniques for Sequential Circuit State 
Diagrams. IEEE Trans. on Electronic Computers 12.



From Expressions to Automata

[1] V. M. Glushkov (1961). The abstract theory of automata. Russian Math. Surveys 16.
[2] G. Berry and R. Sethi (1986). From regular expressions to deterministic automata. Theoretical Computer Science 48.
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Corollaries

• Equivalence problem for PREs is decidable: 
given PREs E and F, does they generate the 
same semantics? (translation into automata [1])

• Threshold problem for PREs is undecidable: 
given a PRE E and a threshold s, is there a word 
w which is mapped by to a probability greater 
than s? (by reduction to automata [2])

[1] M.-P. Schützenberger (1961). On the Definition of a Family of Automata. Information and Control.
[2] A. Paz. (1971). Introduction to probabilistic automata. Academic Press,



Summary and Future Works
• General Kleene-Schützenberger theorems for Probabilistic 

models (classical, extended to two-way automata, pebble 
automata in full paper [1])

• Study of Probabilistic Expressions and their extensions 
permits us to better understand which behavior 
Probabilistic Automata can generate

• In [2], we proved that Weighted Automata (with two-way 
and pebbles) can be evaluated efficiently

• Future work: get logical formalisms generating the same 
expressivity, and implement quick algorithms to perform 
translation from PREs to PAs (as there are some for 
weighted automata, see [2,3] e.g.)

[1] B. Bollig, P. Gastin, B. M. and M. Zeitoun. (2012). A Probabilistic Kleene Theorem. In Proceedings of ATVA’12.
[2] P. Gastin and B. M. (2006). Adding Pebbles to Weighted Automata. In Proceedings of CIAA’12.
[3] C. Allauzen, and M., Mohri, (2006). A Unified Construction of the Glushkov, Follow, and Antimirov Automata. In Proceedings of MFCS’06



Automata Model
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a, 1

b, 1
Usual Rabin automata...

A = (Q, ι,Acc,P)
P : Q× Σ×Q → [0, 1]

Acc(q) +
X

q02Q

P(q, a, q0)  1 for all (q, a) 2 Q ⇥ A
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Usual Rabin automata...

GOAL: Remove all trace of non-determinism
- seems to be a strong restriction

+ indeed we can drop it using a right marker ◁ in words

A = (Q, ι,Acc,P)
P : Q× Σ×Q → [0, 1]

Acc(q) +
X

q02Q

P(q, a, q0)  1 for all (q, a) 2 Q ⇥ A



2-way Probabilistic Expressions

Random walk

E = (¬/?(s!+ (1� s)¬.? ))⇤ /?

Random walk on a word u of length n (Markov chain):

0 1 2 n− 2 n− 1 n

s

1− s

s

1− s

. . .
s

1− s

s

With 0 < s < 1 and ↵ = 1�s

s

, one can show that

[[E]](u) =
1

1 + ↵+ . . .+ ↵|u|

Expression E computes an infinite sum of positive values.

Random Walk over a finite linear graph

◁
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Adding Pebbles: pLTL
Each LTL formula φ has an implicit free variable x denoting the position where the formula is 
evaluated.  We use a pebble to mark this position.

Let P(φ, u, i ) denote the probability that φ holds on word u at position i.

14/42

Probabilistic LTL
Each LTL formula ' has an implicit free variable x denoting the position where the
formula is evaluated. We use a pebble to mark this position.

Let P(', u, i) denote the probability that ' holds on word u at position i.

P(G', u, i) =
Q

j�i

P(', u, j)

AG'

(x) =

!?

Aϕ(x)
OK

KO

→

x? →

↓x
!?↑

I Pebbles are reusable:

I Hiding policy: only the last dropped occurrence of a pebble is visible.

I Stack policy: the lifted pebble is the last dropped pebble.
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Probabilistic LTL

P(F', u, i) = P(', u, i) + (1� P(', u, i))⇥ P(F', u, i+ 1)
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Theorem
  PREs and PAs are expressively equivalent.
  2-way PREs and 2-way PAs are expressively equivalent.
  Pebble PREs and Pebble PAs are expressively equivalent.

1-way
2-way

Pebble



Extensions

• Add 2-way and pebbles in automata and 
expressions (XPath-like syntax)

• Possibility to express more, e.g. smaller 
probabilities (to represent rare events)

• Still a natural way to denote probabilistic 
properties about words



Conclusion
• General Kleene-Schützenberger theorems for 

Probabilistic models (classical, two-way, pebbles...)

• Study of Probabilistic Expressions and their 
extensions permits us to better understand which 
behavior Probabilistic Automata can generate

• In [1], we proved that Weighted Automata with two-
way and pebbles can be evaluated efficiently

• Future work: get logical formalisms generating the 
same expressivity, and implement quick algorithms to 
perform translation from PREs to PAs (as there are 
some for weighted automata, see [2,1] e.g.)

[1] P. Gastin and B. M. (2006). Adding Pebbles to Weighted Automata. In Proceedings of CIAA’12.
[2] C. Allauzen, and M., Mohri, (2006). A Unified Construction of the Glushkov, Follow, and Antimirov Automata. In Proceedings of MFCS’06


