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Motivations

® Theoretically: relate denotational and computational
models

® Practically: easier to write specifications using regular
expressions vs. easier to check properties
(emptiness, inclusion...) with automata

® (Goal: translate expressions to automata, as efficiently
as possible
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\Ne'\g\'\‘ed Finite State Automata

aab

same expressivity e rune.

| 213 of weight I/6xIxIxI=1/6
and | = =13 of weight |/2x1/2xIx1=1/4

hence, a a b recognized with weight 1/6+1/4=5/12

\]\le'\%‘“‘ed Regular Expressions
E:=p|a|E+E|E-E|E- *EPVO‘?G“

[1]S.Kleene (1956). Representation of events in nerve nets and finite automata.

[2] M.-P. Schutzenberger (1961). On the Definition of a Family of Automata. Information and Control.

For an overview about Weighted Automata, see, e.g., Handbook of Weighted Automata. Editors: Manfred Droste,
Werner Kuich, and Heiko Vogler. EATCS Monographs in Theoretical Computer Science. Springer, 2009.
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What kind of expressions!

(ga(a+0) + 3a)" (5a+b) @
(%a(a—l—b) - %a)*(a—l—b) 6
(ga(a+b) + 5a)" (5a+ 3b) 4

Searching for a
of weighted regular expressions
representing
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How to iterate?

Not a valid Probabilistic
Automaton anymore

(acceptance condition
not fulfilled)
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Constructing Probabilistic Expressions

How to iterate?

a,l
b, 1

1
CL,§

Keep some branch for
termination of the
%a(a +b) + %a 4+ (%a + b) Probabilistic Automaton
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Probabilistic Expressions

® gcA and pe[0,1] are PREs a
® |f (Ea)aeA are PRES, then ZGEA a- Ea Is a PRE
® if Eand F are PREs,then p-E + (1-p)-Fis a PRE

® if Eand F are PREs, then E:-F is a PRE

e if E+Fis a PRE, then E'-Fis a PRE

® (losure of PRE under commutativity of +,

(a-E)-b-F
associativity of + and -, distributivity of - over + (p-E)-(1-p)-F

Semantics given as a fragment of regular

o - P(E-F,u)= )  P(E,v)x P(F,w)
expressions in complete semirings...

u=vw
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Deterministic Exam Ple

choice \

a-+b Concatenation rule
Star rule ”’l
a*b %a + %b
a*b(5a + 3b) Probabilistic
Distributivity ___» l choice

: +
of - over a*b%aqta*b%b

l 44— Star rule

(a*bza)*a*bsb

The choice in the star is made far from the beginning...



Probabilistic Kleene-
Schutzenberger Theorem

® Every PRE can be translated into an
equivalent Probabilistic automaton.

® Every Probabilistic automaton can be
denoted by an equivalent PRE.



From Automata to Expressions

® Usual procedures (Brozozwski-McCluskey,
elimination, McNaughton-Yamada...) keeping
probabilistic constraints in mind

® Requires to prove some (useful) properties of PREs,
e.g.,

[I]])-A.Brzozowski and E.]. McCluskey (1963). Signal Flow Graph Techniques for Sequential Circuit State
Diagrams. IEEE Trans. on Electronic Computers 2.
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[1TV.M. Glushkov (1961).The abstract theory of automata. Russian Math. Surveys 16.
[2] G. Berry and R. Sethi (1986). From regular expressions to deterministic automata. Theoretical Computer Science 48.
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Corollaries

given PREs E and F, does they generate the
same semantics? (translation into automata [1])

given a PRE E and a threshold s, is there a word
w which is mapped by to a probability greater
than s? (by reduction to automata [2])

[1] M.-P. Schutzenberger (1961). On the Definition of a Family of Automata. Information and Control.
[2] A. Paz. (1971). Introduction to probabilistic automata. Academic Press,



Summary and Future Works

® General Kleene-Schutzenberger theorems for Probabilistic
models (classical, extended to two-way automata, pebble
automata in full paper [I])

® Study of Probabilistic Expressions and their extensions
permits us to better understand which behavior
Probabilistic Automata can generate

® |n [2], we proved that Weighted Automata (with two-way
and pebbles) can be evaluated efficiently

® Future work: get logical formalisms generating the same
expressivity, and implement quick algorithms to perform
translation from PREs to PAs (as there are some for
weighted automata, see [2,3] e.g.)

[I] B. Bollig, P. Gastin, B. M. and M. Zeitoun. (2012).A Probabilistic Kleene Theorem. In Proceedings of ATVA’I2.
[2] P. Gastin and B. M. (2006).Adding Pebbles to Weighted Automata. In Proceedings of CIAA’|2.
[3] C.Allauzen, and M., Mohri, (2006).A Unified Construction of the Glushkov, Follow, and Antimirov Automata. In Proceedings of MFCS’06
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Automata I"llodel

Usual Rabin automata...

A= (Q,t,Acc,P)
P:@Q xXxQ—1[0,1]

Acc(q) + Z P(q,a,q") <1forall (gq,a)c@xA
q’'cq

GOAL: Remove all trace of non-determinism

- seems to be a strong restriction
+ indeed we can drop it using a right marker < in words
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(1 —5), <7, <

|dea: replace every letter a by a test a?
followed by a move (either = or «)



2-way Probabilistic Expressions

Random Walk over a finite linear graph

S S S

S
OO OR @
1—s 1—s l—s
Expressible with <
Probabilistic 2-way Automata Expressible with

Probabilistic 2-way Expressions

s, <17, —

*
E = (—<?s— + =<a?(1 — s)¢) «?
@ Not expressible with
Probabilistic Expressions / Probabilistic Automata

1—3 , <l

|dea: replace every letter a by a test a?
followed by a move (either = or «)

Expressiveness result still holds!
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Each LTL formula @ has an implicit free variable x denoting the position where the formula is
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Adding Pebbles: pLTL

Each LTL formula @ has an implicit free variable x denoting the position where the formula is
evaluated. We use a pebble to mark this position.

Let P(, u,i ) denote the probability that ¢ holds on word u at position i.

P(F o, u, 1) P(o,u, i) + (1 = P(p,u,i)) x P(Fo,u,i+ 1)

— Zsz’ (....i§k<j IP)(_'Spa u, k)) X P(Spa U,])
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Theorem

B PREs and PAs are expressively equivalent.

® )-way PREs and 2-way PAs are expressively equivalent.

B Pebble PREs and Pebble PAs are expressively equivalent‘

‘

e




Extensions

® Add 2-way and pebbles in automata and
expressions (XPath-like syntax)

® Possibility to express more, e.g. smaller
probabilities (to represent rare events)

® Still a natural way to denote probabilistic
properties about words



Conclusion

® General Kleene-Schutzenberger theorems for
Probabilistic models (classical, two-way, pebbles...)

® Study of Probabilistic Expressions and their
extensions permits us to better understand which
behavior Probabilistic Automata can generate

® In [l], we proved that Weighted Automata with two-
way and pebbles can be evaluated efficiently

® Future work: get logical formalisms generating the
same expressivity, and implement quick algorithms to
perform translation from PREs to PAs (as there are
some for weighted automata, see [2,1] e.g.)

[I] P. Gastin and B. M. (2006). Adding Pebbles to Weighted Automata. In Proceedings of CIAA’|2.
[2] C.Allauzen, and M., Mohri, (2006). A Unified Construction of the Glushkov, Follow, and Antimirov Automata. In Proceedings of MFCS’06



