Enforcement of timed properties	Enforcement of safety properties	Conclusion
000000	0000	

Runtime Enforcement of Timed Properties

Srinivas Pinisetty¹,Yliès Falcone², Thierry Jéron¹, Hervé Marchand¹, Antoine Rollet³ and Omer Nguena Timo³

> INRIA Rennes - Bretagne Atlantique, France LIG, Université Grenoble I, France LaBRI, Université de Bordeaux - CNRS, France

MOVEP 2012, December 05, Marseille

Introduction	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Outline			

2 Enforcement of timed properties

3 Enforcement of safety properties

4 Conclusion

Introduction •00 nforcement of timed properties

Enforcement of safety properties 0000 Conclusion

Verification and enforcement monitors

- Does the run satisfy the property?
- Monitoring an executing system.
- No system model.
- Input: stream of events.
- Output: stream of verdicts.

Runtime enforcement

- The run should satisfy the property.
- Monitoring an executing system.
- No system model.
- Input: stream of events (may violate the property).
- Output: stream of events (should satisfy the property).

Introductio	n
000	

nforcement of timed properties

Enforcement of safety properties 0000

Verification and enforcement monitors

- Does the run satisfy the property?
- Monitoring an executing system.
- No system model.
- Input: stream of events.
- Output: stream of verdicts.

Runtime enforcement

- The run should satisfy the property.
- Monitoring an executing system.
- No system model.
- Input: stream of events (may violate the property).
- Output: stream of events (should satisfy the property).

- Possibly augmented with a memorization
- Possibly augmented with a memorization mechanism.

Enforcement mechanism

An EM modifies the current execution sequence (sometimes like a "filter").

- reads an input sequence $\sigma \in \Sigma^*$.
- outputs a new sequence $o \in \Sigma^*$.
- endowed with a set of enforcement primitives.
 - operates on the memorization mechanism.
 - delete or insert events using the memory content and the current input.

An EM behaves as a function $E: \Sigma^* \to \Sigma^*$.

Introduction	1
000	

Motivation for timed enforcement

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints between events).

• After an action "a", action "b" should occur with a delay of at least 5 time units between them.

- Domains: Real-time embedded systems, monitor hardware failures, communication protocols, web services and many more.
- Examples
 - Monitor a firewall to prevent DOS attack ensuring minimal delay between input events.
 - Monitor a web application to check if pre-conditions are met to provide a service.

Introc	luction
000	

Enforcement of safety properties 0000

Motivation for timed enforcement

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints between events).

• After an action "a", action "b" should occur with a delay of at least 5 time units between them.

- Domains: Real-time embedded systems, monitor hardware failures, communication protocols, web services and many more.
- Examples
 - Monitor a firewall to prevent DOS attack ensuring minimal delay between input events.
 - Monitor a web application to check if pre-conditions are met to provide a service.

Introc	luction
000	

Motivation for timed enforcement

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints between events).

• After an action "a", action "b" should occur with a delay of at least 5 time units between them.

- Domains: Real-time embedded systems, monitor hardware failures, communication protocols, web services and many more.
- Examples
 - Monitor a firewall to prevent DOS attack ensuring minimal delay between input events.
 - Monitor a web application to check if pre-conditions are met to provide a service.

Introc	luction
000	

Enforcement of safety properties 0000

Motivation for timed enforcement

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints between events).

• After an action "a", action "b" should occur with a delay of at least 5 time units between them.

- Domains: Real-time embedded systems, monitor hardware failures, communication protocols, web services and many more.
- Examples
 - Monitor a firewall to prevent DOS attack ensuring minimal delay between input events.
 - Monitor a web application to check if pre-conditions are met to provide a service.

Introc	luction
000	

Motivation for timed enforcement

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints between events).

• After an action "a", action "b" should occur with a delay of at least 5 time units between them.

- Domains: Real-time embedded systems, monitor hardware failures, communication protocols, web services and many more.
- Examples
 - Monitor a firewall to prevent DOS attack ensuring minimal delay between input events.
 - Monitor a web application to check if pre-conditions are met to provide a service.

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Outline			

2 Enforcement of timed properties

3 Enforcement of safety properties

4 Conclusion

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
	00000		
Enforcement	of timed properties		

From untimed to timed properties enforcement

New elements have to be taken into account

• Input/output sequences are timed words:

$$\sigma = (\delta_1, a_1) \cdot (\delta_2, a_2) \cdots (\delta_n, a_n), \delta_i \in \mathbb{R}_{\geq}, a_i \in \Sigma.$$

• Property φ described by a timed automaton or a timed logic.

Synthesis of the corresponding enforcer?

• Class of enforceable properties?

- \rightarrow Focus on safety and co-safety properties modeled by TA.
- Model of the enforcer?
 - ightarrow Memory + similar operations (Store, Dump).
 - \rightarrow No finite structure.
 - \rightarrow Requirements (What should the enforcer do?).

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
	00000		
Enforcement	of timed properties		

From untimed to timed properties enforcement

New elements have to be taken into account

• Input/output sequences are timed words:

$$\sigma = (\delta_1, a_1) \cdot (\delta_2, a_2) \cdots (\delta_n, a_n), \delta_i \in \mathbb{R}_{\geq}, a_i \in \Sigma.$$

• Property φ described by a timed automaton or a timed logic.

Synthesis of the corresponding enforcer?

- Class of enforceable properties?
 - \rightarrow Focus on safety and co-safety properties modeled by TA.
- Model of the enforcer?
 - \rightarrow Memory + similar operations (Store, Dump).
 - \rightarrow No finite structure.
 - \rightarrow Requirements (What should the enforcer do?).

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	00000	0000	
Property			

Defined by a timed language $\varphi \subseteq (\mathbb{R}_{\geq 0} \times \Sigma)^*$. A timed word σ satisfies φ (noted $\sigma \models \varphi$) if $\sigma \in \varphi$. Focus on properties specified by a TA \mathcal{A}_{φ} .

Safety and co-safety properties specified by TA

- Safety: nothing bad should ever happen (prefix closed).
- Co-safety: something good will eventually happen within a finite amount of time (extension closed).

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	00000	0000	
Property			

Defined by a timed language $\varphi \subseteq (\mathbb{R}_{\geq 0} \times \Sigma)^*$. A timed word σ satisfies φ (noted $\sigma \models \varphi$) if $\sigma \in \varphi$. Focus on properties specified by a TA \mathcal{A}_{φ} .

Safety and co-safety properties specified by TA

- Safety: nothing bad should ever happen (prefix closed).
- Co-safety: something good will eventually happen within a finite amount of time (extension closed).

$$\Sigma_{1} \setminus \{r\} \qquad \Sigma_{1} \setminus \{r\} \qquad \Sigma_{1} \setminus \{r\} \qquad \Sigma_{1} \\ \uparrow \qquad r, \qquad r, \qquad 0 \qquad r, x < 5 \qquad 0 \\ \downarrow_{1} \qquad r, x \geq 5, \qquad r, x \geq 5, \\ x := 0 \qquad r = 0$$

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	00000	0000	
Property			

Defined by a timed language $\varphi \subseteq (\mathbb{R}_{\geq 0} \times \Sigma)^*$. A timed word σ satisfies φ (noted $\sigma \models \varphi$) if $\sigma \in \varphi$. Focus on properties specified by a TA \mathcal{A}_{φ} .

Safety and co-safety properties specified by TA

- Safety: nothing bad should ever happen (prefix closed).
- Co-safety: something good will eventually happen within a finite amount of time (extension closed).

Introduction	

Enforcement of timed properties

Enforcement of safety properties 0000 Conclusior

Enforcement monitoring in a timed context

- φ : Property which should be enforced (specified by a TA).
- σ: Input timed word.
- Output at time t: $E(\sigma, t)$ should satisfy some additional constraints [Soundness, Transparency, Optimality].
- E realized as a Enforcement Monitor (EM).

Introduction	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000		0000	O
Enforcement	Monitor - EM		

Memory

Timed word

Operations

- Store: stores the received event and a delay in the memory.
- Dump: removes the event from memory and releases it as output.

Introduction	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Decisions			

$$(\delta'_{1}, a_{1}) \cdots (\delta'_{k}, a_{k}) \models \varphi \xrightarrow{(\delta'_{k+1}, a_{k+1}) \cdots (\delta'_{m}, a_{m})} EM_{\varphi} \xrightarrow{\sigma = (\delta_{1}, a_{1}) \cdots (\delta_{k}, a_{k}) \cdots (\delta_{m}, a_{m}) \cdots (\delta_{n}, a_{n})} \xrightarrow{\sigma = (\delta_{1}, a_{1}) \cdots (\delta_{k}, a_{k}) \cdots (\delta_{m}, a_{m}) \cdots (\delta_{n}, a_{n})} \xrightarrow{\sigma = (\delta_{1}, a_{1}) \cdots (\delta_{k}, a_{k}) \cdots (\delta_{m}, a_{m}) \cdots (\delta_{n}, a_{n})} \xrightarrow{\sigma = (\delta_{1}, a_{1}) \cdots (\delta_{k}, a_{k}) \cdots (\delta_{m}, a_{m}) \cdots (\delta_{n}, a_{n})}$$

What can the enforcer do?

- No insertion, deletion of events.
- Order of events cannot be changed.
- Allow to increase the delay between actions.

Introduction 000	Enforcement of timed properties	Enforcement of safety properties	Conclusion O
Summary of	the approach		

- Requirements: Soundness, Transparency and Optimality conditions.
- Enforcement Monitor: Defined as a transition system (which should satisfy the requirements).
- Implementation: Translation of the EM semantic rules into algorithms.

Introduction 000	Enforcement of timed properties	Enforcement of safety properties	Conclusion O
Summary of	the approach		

- Requirements: Soundness, Transparency and Optimality conditions.
- Enforcement Monitor: Defined as a transition system (which should satisfy the requirements).
- Implementation: Translation of the EM semantic rules into algorithms.

Introduction 000	Enforcement of timed properties	Enforcement of safety properties	Conclusion O
Summary of	the approach		

- Requirements: Soundness, Transparency and Optimality conditions.
- Enforcement Monitor: Defined as a transition system (which should satisfy the requirements).
- Implementation: Translation of the EM semantic rules into algorithms.

Introduction	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Outline			

1 Introduction

2 Enforcement of timed properties

Inforcement of safety properties

4 Conclusion

Introd	

Inforcement of timed properties

Enforcement of safety properties

Enforcement of a safety property

oundness

$\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, \ E(\sigma, t) \models \varphi.$

At any time instant t, the output $E(\sigma, t)$ delays the input $\operatorname{obs}(\sigma, t)$: $\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \preccurlyeq_d \operatorname{obs}(\sigma, t) \land \operatorname{time}(E(\sigma, t)) \leq t.$

If E is sound and transparent, it is *optimal* for any σ , t if

- (Op1) E(σ, t) is among the longest correct timed words delaying obs(σ, t).
- (Op2) Every prefix of $E(\sigma, t)$ has the shortest possible last delay.

Introd	

Inforcement of timed properties

Enforcement of safety properties

Enforcement of a safety property

Soundness

$\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \models \varphi.$

ransparency

At any time instant t, the output $E(\sigma, t)$ delays the input $\operatorname{obs}(\sigma, t)$: $\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \preccurlyeq_d \operatorname{obs}(\sigma, t) \land \operatorname{time}(E(\sigma, t)) \leq t.$

If *E* is sound and transparent, it is *optimal* for any σ , *t* if

- (Op1) $E(\sigma, t)$ is among the longest correct timed words delaying $obs(\sigma, t)$.
- (Op2) Every prefix of $E(\sigma, t)$ has the shortest possible last delay.

Introd	

inforcement of timed properties

Enforcement of safety properties

Enforcement of a safety property

Soundness

$\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \models \varphi.$

ransparency

At any time instant t, the output $E(\sigma, t)$ delays the input $\operatorname{obs}(\sigma, t)$: $\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \preccurlyeq_d \operatorname{obs}(\sigma, t) \land \operatorname{time}(E(\sigma, t)) \leq t.$

If *E* is sound and transparent, it is *optimal* for any σ , *t* if

- (Op1) E(σ, t) is among the longest correct timed words delaying obs(σ, t).
- (Op2) Every prefix of $E(\sigma, t)$ has the shortest possible last delay.

	od		
00			

Enforcement of timed properties

Enforcement of safety properties

Enforcement of a safety property

Soundness

$$\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \models \varphi.$$

ransparency

At any time instant t, the output $E(\sigma, t)$ delays the input $\operatorname{obs}(\sigma, t)$: $\forall \sigma \in (\mathbb{R}_{\geq 0} \times \Sigma)^*, \forall t \in \mathbb{R}_{\geq 0}, E(\sigma, t) \preccurlyeq_d \operatorname{obs}(\sigma, t) \land \operatorname{time}(E(\sigma, t)) \leq t.$

Optimality

- If E is sound and transparent, it is *optimal* for any σ , t if
 - (Op1) $E(\sigma, t)$ is among the longest correct timed words delaying $obs(\sigma, t)$.
 - (Op2) Every prefix of $E(\sigma, t)$ has the shortest possible last delay.

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
EM for a	safety property		

$$\textit{EM} = \langle \textit{C},\textit{C}_0,\, \Gamma_{\textit{EM}}, \hookrightarrow \rangle$$

- $C = (\mathbb{R}_{\geq 0} \times \Sigma)^* \times \mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0} \times \mathbb{B} \times Q$ is the set of configurations
- Initial configuration is $C_0 = \langle \epsilon, 0, 0, \mathtt{tt}, q_0 \rangle \in C;$
- Γ_{EM} = ((ℝ_{≥0} × Σ) ∪ {ε}) × Op × ((ℝ_{≥0} × Σ) ∪ {ε}) is the input-operation-output alphabet, where Op = {Store(·), Dump(·), Delay(·)};

•
$$\hookrightarrow \subseteq C \times \Gamma_{EM} \times C$$

EM should fulfill the soundness, transparency and optimality conditions.

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Operations			

1. Store

$$\langle \sigma_s, \delta, d, \mathtt{tt}, q \rangle \stackrel{(\delta, \mathbf{a})/\mathrm{Store}(\delta', \mathbf{a})/\epsilon}{\hookrightarrow} \langle \sigma_s \cdot (\delta', \mathbf{a}), 0, d, (\delta' \neq \infty), q' \rangle \text{ with:}$$

•
$$\delta' = ext{shortest delay } \delta' \geq \delta ext{ s.t. } (q \stackrel{(\delta', a)}{\to} q', q' \in G)$$

•
$$q'$$
 is defined as $q \stackrel{(\delta', \mathsf{a})}{ o} q'$ if $\delta' < \infty$ and $q' = q$ otherwise

2. Dump

$$\left\langle \left(\delta, \boldsymbol{a}\right) \cdot \sigma_{\boldsymbol{s}}, \boldsymbol{s}, \delta, \boldsymbol{b}, \boldsymbol{q} \right\rangle \overset{\epsilon/\operatorname{Dump}\left(\delta, \boldsymbol{a}\right)/\left(\delta, \boldsymbol{a}\right)}{\hookrightarrow} \left\langle \sigma_{\boldsymbol{s}}, \boldsymbol{s}, \boldsymbol{0}, \boldsymbol{b}, \boldsymbol{q} \right\rangle \text{ if } \delta \neq \infty$$

3. Delay

$$\langle \sigma_{\mathfrak{s}}, \mathfrak{s}, \mathfrak{d}, \mathfrak{b}, \mathfrak{q} \rangle \stackrel{\epsilon/\operatorname{del}(\delta)/\epsilon}{\hookrightarrow} \langle \sigma_{\mathfrak{s}}, \mathfrak{s} + \delta, \mathfrak{d} + \delta, \mathfrak{b}, \mathfrak{q} \rangle$$

Implemen	ntation		
000	000000	0000	
Introduction	Enforcement of timed properties	Enforcement of safety properties	Conclusion

Algorithm: StoreProcess $(l, X) \leftarrow (l_{\text{init}}, [X \leftarrow 0])$ while tt do $(\delta, a) \leftarrow \text{await } event$ if $(post(l, X, a, \delta) \notin G)$ then $\delta' \leftarrow \text{update}(l, X, a, \delta)$ if $\delta' = \infty$ then terminate StoreProcess end if else $\delta' \leftarrow \delta$ end if $(l, X) \leftarrow \text{post}(l, X, a, \delta')$ enqueue (δ', a) end while

```
\label{eq:linear_states} \begin{array}{c} \hline \text{Algorithm: DumpProcess} \\ \hline d \leftarrow 0 \\ \textbf{while tt do} \\ await (|\sigma_s| \geq 1) \\ (\delta, a) \leftarrow \text{dequeue } (\sigma_s) \\ wait (\delta - d) \\ \text{dump } (a) \\ d \leftarrow 0 \\ \textbf{end while} \end{array}
```

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
000	000000	0000	
Outline			

1 Introduction

2 Enforcement of timed properties

3 Enforcement of safety properties

4 Conclusion

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
			•
Conclusion			

Formal approach for enforcing timed properties

- Enforcer adds additional delay between input actions in order to satisfy the property.
- Additional constraints to ensure choosing "best" delay between actions.
- Focused on safety/co-safety properties.
- Algorithms to implement the enforcers.
- Prototypes developed using Python and UPPAAL.

Ongoing/ future work

- Enforcing more expressive properties.
- New transparency conditions.
- Improve implementation.
- Test on case studies (analysis, different architectures).

	Enforcement of timed properties	Enforcement of safety properties	Conclusion
			•
Conclusion			

Formal approach for enforcing timed properties

- Enforcer adds additional delay between input actions in order to satisfy the property.
- Additional constraints to ensure choosing "best" delay between actions.
- Focused on safety/co-safety properties.
- Algorithms to implement the enforcers.
- Prototypes developed using Python and UPPAAL.

Ongoing/ future work

- Enforcing more expressive properties.
- New transparency conditions.
- Improve implementation.
- Test on case studies (analysis, different architectures).

Introduction 000	Enforcement of timed properties	Enforcement of safety properties 0000	Conclusion O
Example			
	$ \begin{array}{c} \Sigma_1 \setminus \{r\} & \Sigma_1 \setminus \{r\} \\ & & & \\ & $	$(r, x < 5) \xrightarrow{\Sigma_1} (l_2)$ $(3, r) \cdot (1, r)$	
<i>t</i> ≏ 0	$\frac{\epsilon}{\epsilon} (\epsilon, 0, 0, \mathtt{tt}, < l_0, 0 >)/(1, a) \cdot (3, r) \cdot (1, r)$ $\downarrow del(1)$		
t = 1	$\epsilon/(\epsilon, 1, 1, tt, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)$ \downarrow Store		

Introduction 000	Enforcement of timed properties	Enforcement of safety properties	Conclusion O
Example			
	$\Sigma_1 \setminus \{r\} \qquad \Sigma_1 \setminus \{r\}$ $\downarrow r, \qquad \Sigma_1 \setminus \{r\}$ $\downarrow r, \qquad r, \qquad \downarrow r, \qquad r, \qquad$	$\xrightarrow{\Sigma_1} \underbrace{\bigcirc}_{l_2} \\ 3, r) \cdot (1, r)$	
<i>t</i> ≏ 0	$\epsilon/(\epsilon, 0, 0, \mathtt{tt}, < l_0, 0 >)/(1, a) \cdot (3, r) \cdot (1, r) \ \downarrow \mathrm{del}(1)$		
t = 1	$\epsilon/(\epsilon, 1, 1, tt, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)$ \downarrow Store		
t = 1	$\epsilon/((1,a),0,1,\mathtt{tt},<\mathit{l}_0,1>)/(3,r)\cdot(1,r)$ $\downarrow Dump$		

Introduction 000	Enforcement of timed properties	Enforcement of safety properties 0000	Conclusion O
Example			
	$\Sigma_1 \setminus \{r\} \qquad \Sigma_1 \setminus \{r\}$ $\downarrow i_0 \qquad x := 0 \qquad \downarrow i_1 \qquad f$ $\uparrow \qquad f$ $r, x \ge 5, \\ x := 0$ Input $\sigma = (1, a) \cdot ($	$(x, x < 5) \xrightarrow{\Sigma_1} l_2$ $(3, r) \cdot (1, r)$	
$t \triangleq 0$	$\epsilon/(\epsilon, 0, 0, tt, < l_0, 0 >)/(1, a) \cdot (3, r) \cdot (1, r)$ del(1)		
t = 1	$\epsilon/(\epsilon, 1, 1, tt, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)$ \downarrow Store		
t = 1	$\epsilon/((1,a),0,1,tt,< l_0,1>)/(3,r) \cdot (1,r)$ $\downarrow Dump$		
t = 1	$(1,a)/(\epsilon,0,0,\mathtt{tt},<\mathit{l}_0,1>)/(3,r)\cdot(1,r)\ \downarrow \mathrm{del}(3)$		

Introduction 000	Enforcement of timed properties	Enforcement of safety properties	Conclusion O
Example			
	$ \begin{array}{c} \Sigma_1 \setminus \{r\} & \Sigma_1 \setminus \{r\} \\ \hline \\ l_0 & x := 0 \\ \uparrow & & \downarrow \\ r, x \ge 5, \\ x := 0 \\ \end{array} \\ \\ Input \ \sigma = (1, \mathbf{a}) \cdot ($	$ \xrightarrow{\Sigma_1} \underbrace{\bigcirc}_{l_2} \\ 3, r) \cdot (1, r) $	
$t \triangleq 0$	$\epsilon/(\epsilon, 0, 0, tt, < I_0, 0 >)/(1, a) \cdot (3, r) \cdot (1, r)$	$ (1, a) \cdot (3, r) / (\epsilon, 0, 0; tt, < l_1, 0 >) / (1) $	$,r) t \simeq 4$
t = 1	$\frac{\epsilon}{(\epsilon, 1, 1, \mathtt{tt}, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)} \downarrow \text{Store}$	$(1, a) \cdot (3, r)/(\epsilon, 1, 1, tt, < l_1, 1 >)/(1 \downarrow Store$	(r) t = 5
t = 1	$\frac{\epsilon}{((1,a),0,1,\texttt{tt},< l_0,1>)/(3,r)\cdot(1,r)}{\downarrow Dump}$	$(1, a) \cdot (3, r) / ((5, r), 0, 1, tt, < l_1, 0 > $ $\downarrow del(4)$	$)/\epsilon$ $t=5$
t = 1	$(1,a)/(\epsilon,0,0,\texttt{tt},< l_0,1>)/(3,r)\cdot(1,r)$ $\downarrow del(3)$	$(1, a) \cdot (3, r) / ((5, r), 4, 5, tt, < l_1, 4 > $ $\downarrow Dump$	$)/\epsilon$ $t=9$
t = 4	$(1,a)/(\epsilon,3,3,tt,< l_0,4>)/(3,r)\cdot(1,r)$ $\downarrow \text{Store}$	$(1, a) \cdot (3, r) \cdot (5, r)/(\epsilon, 4, 0, tt, < l_1, 4 > $ Dump	$>)/\epsilon t = 9$
t = 4	$(1,a)/((3,r),0,3,tt,< l_1,0>)/(1,r)$ —		

Introduction 000	Enforcement of timed properties	Enforcement of safety properties 0000	Conclusion O
Example			
	$\Sigma_1 \setminus \{r\} \qquad \Sigma_1 \setminus \{r\}$ $\downarrow r, \qquad \Sigma_1 \setminus \{r\}$ $\downarrow r, \qquad r, \qquad \downarrow r, \qquad r, \qquad$	$(x < 5) \xrightarrow{\Sigma_1} (l_2)$ $(3, r) \cdot (1, r)$	
<i>t</i> ≏ 0	$\frac{\epsilon}{(\epsilon,0,0,\mathtt{tt},)/(1,a)\cdot(3,r)\cdot(1,r)} \\ \downarrow \operatorname{del}(1)$	$\rightarrow (1, a) \cdot (3, r) / (\epsilon, 0, 0; tt, < l_1, 0 >) / (1,]$	<i>r</i>) <i>t</i> ≏ 4
t = 1	$\frac{\epsilon}{(\epsilon, 1, 1, \texttt{tt}, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)} \downarrow \text{Store}$	$(1, a) \cdot (3, r) / (\epsilon, 1, 1, tt, < l_1, 1 >) / (1, \downarrow Store$	<i>r</i>) <i>t</i> = 5
t = 1	$\frac{\epsilon}{((1,a),0,1,\texttt{tt},<\textit{l}_0,1>)/(3,r)\cdot(1,r)} \downarrow Dump$	$(1, a) \cdot (3, r)/((5, r), 0, 1, tt, < l_1, 0 >)$ $\downarrow del(4)$	$\epsilon t = 5$
t = 1	$(1,a)/(\epsilon,0,0,\mathtt{tt},< l_0,1>)/(3,r)\cdot(1,r) \ \downarrow del(3)$	$(1, a) \cdot (3, r) / ((5, r), 4, 5, tt, < l_1, 4 >)$ $\downarrow Dump$	t = 9
t = 4	$(1, a)/(\epsilon, 3, 3, tt, < l_0, 4 >)/(3, r) \cdot (1, r)$ \$\frac{1}{5} Store	$(1, a) \cdot (3, r) \cdot (5, r) / (\epsilon, 4, 0, tt, < l_1, 4 > Dump$	$(\cdot)/\epsilon t = 9$
t = 4	$(1,a)/((3,r),0,3,tt,< l_1,0>)/(1,r)$ —]	

Introduction 000	Enforcement of timed properties	Enforcement of safety properties 0000	Conclusion O
Example			
$\sum_{1} \setminus \{r\} \qquad \sum_{1} \setminus \{r\} \qquad \sum_{1} \setminus \{r\} \qquad \sum_{1} \setminus \{r\} \qquad \sum_{1} \cap \{r, x < 5\} \qquad 0$ $\uparrow \qquad \qquad$			
$t \doteq 0$	$\frac{\epsilon}{(\epsilon,0,0,\mathtt{tt},<\mathit{l}_0,0>)/(1,a)\cdot(3,r)\cdot(1,r)} \\ \downarrow \mathrm{del}(1)$	$\xrightarrow{(1, a) \cdot (3, r)/(\epsilon, 0, 0; tt, < l_1, 0 >)/(1, \ del(1))}$	r) t ≏ 4
t = 1	$\epsilon/(\epsilon, 1, 1, tt, < l_0, 1 >)/(1, a) \cdot (3, r) \cdot (1, r)$ \$\store\$	$(1, a) \cdot (3, r) / (\epsilon, 1, 1, tt, < l_1, 1 >) / (1, \downarrow Store$	<i>r</i>) <i>t</i> = 5
t = 1	$\frac{\epsilon}{((1,a),0,1,\mathtt{tt},< l_0,1>)/(3,r)\cdot(1,r)} \downarrow Dump$	$(1,a) \cdot (3,r)/((5,r),0,1,tt,< l_1,0>)$ $\downarrow del(4)$	$\epsilon t = 5$
t = 1	$(1,a)/(\epsilon,0,0,\mathtt{tt},< l_0,1>)/(3,r)\cdot(1,r) \ \downarrow del(3)$	$(1,a) \cdot (3,r)/((5,r),4,5,\texttt{tt},< l_1,4>) \\ \downarrow Dump$	$\epsilon t = 9$
t = 4	$(1, a)/(\epsilon, 3, 3, tt, < l_0, 4 >)/(3, r) \cdot (1, r)$ \$\store\$	$(1, a) \cdot (3, r) \cdot (5, r) / (\epsilon, 4, 0, tt, < l_1, 4 >$ Dump	$(\cdot)/\epsilon t = 9$
t = 4	$(1,a)/((3,r),0,3,tt,< l_1,0>)/(1,r)$]	