
MOVEP 2012

December 3 – 7, 2012

CIRM, Marseille, France

Program

The program consists of six invited tutorials, five invited technical talks, and 21 short
presentations by students in four student sessions.

Sunday, December 2

17:00 – 23:00 Registration at CIRM
19:00 – 22:00 Cold buffet

Monday, December 3

08:50 – 09:00 Opening
09:00 – 12:00 Tutorial by Moshe Y. Vardi

Logic and Verification
(Coffee Break around 10:30)

12:00 – 14:00 Lunch Break

14:00 – 15:30 Technical Talk by Martin Leucker
Runtime Verification

15:30 – 16:00 Coffee Break
16:00 – 17:30 Technical Talk by Gilles Barthe

Computer-Aided Cryptographic Proofs and Designs
17:30 – 17:45 Break
17:45 – 18:45 Student Session

· Durica Nikolic: Constraint-based Static Analyses for Java Bytecode
Programs

· Benedikt Nordhoff: Tree-Regular Analysis of Parallel Programs with
Dynamic Thread Creation and Locks

· Artem Khyzha: Compositional reasoning about concurrent libraries
on the axiomatic TSO memory model

· Jose A. Lopes: Hybrid type systems

19:00 – 19:30 Welcome drink at the CIRM

19:30 – Dinner



Tuesday, December 4

09:00 – 12:00 Tutorial by Marta Kwiatkowska
Probabilistic Systems
(Coffee Break around 10:30)

12:00 – 14:00 Lunch Break
14:00 – 15:30 Free time
15:30 – 16:00 Coffee Break
16:00 – 17:30 Technical Talk by Antoine Miné

Static analysis by abstract Interpretation
17:30 – 17:45 Break
17:45 – 19:00 Student Session

· Amit Kumar Dhar: Model Checking Flat Counter Systems
· Ahmet Kara: Model Checking Concurrent Systems with Unbound-

edly Many Processes Using Data Logics
· Aiswarya Cyriac: Model Checking Dynamic Distributed Systems
· Mathieu Caralp: Visibly Pushdown Automata with Multiplicities:

Finiteness and K-Boundedness
· Giuseppe Perelli: Recent Results and Future Directions in Strategy

Logic
19:30 – Dinner

Wednesday, December 5

09:00 – 12:00 Tutorial by Javier Esparza
Unfoldings: A Partial Order approach to Model Checking
(Coffee Break around 10:30)

12:00 – 14:00 Lunch Break
14:00 – 17:00 Tutorial by Kim G. Larsen

Timed automata and their quantitative extensions
(Coffee Break around 15:30)

17:00 – 17:15 Break
17:15 – 19:00 Student Session

· Srinivas Pinisetty: Runtime Enforcement of Timed Properties
· Sylvain Cotard: Runtime Verification for Real-Time Automotive Em-

bedded Software
· Aleksandra Jovanovic: Implementation of Real-Time Systems: The-

ory and Practice
· Benjamin Monmege: A Probabilistic Kleene Theorem
· Paulin Fournier: Parameterized verification of networks with many

identical probabilistic processes
· Shashank Pathak: Formal Verification of Agents Learning by Rein-

forcement
· Laure Millet: Formal Verification of Mobile Robot Protocols

19:30 – Dinner



Thursday, December 6

09:00 – 12:00 Tutorial by Hugo Gimbert
Games for Verification and Synthesis
(Coffee Break around 10:30)

12:00 – 14:00 Lunch Break

14:00 – 15:30 Free time
15:30 – 16:00 Coffee Break
16:00 – 17:30 Technical Talk by Ahmed Bouajjani

Verification of concurrent systems
17:30 – 17:45 Break
17:45 – 19:00 Student Session

· Florent Avellaneda: Checking Two Structural Properties of Vector
Addition Systems with States

· César Rodriguez: Construction and Verification of Unfoldings for
Petri Nets with Read Arcs

· Jan-Thierry Wegener: On Minimality and Equivalence of Petri Nets
· Stanislav Bohm: Kaira: HPC and Petri nets
· Maxime Folschette: Inferring Biological Regulatory Networks from

Process Hitting models

19:30 – Special dinner (bouillabaisse)

Friday, December 7

09:00 – 12:00 Tutorial by Alessandro Cimatti and Thomas Noll
Analysis of Extended AADL Models
(Coffee Break around 10:30)

12:00 – 14:00 Lunch Break

14:00 – 15:30 Technical Talk by Ruzica Piskac
Software Synthesis

15:30 – 16:00 Coffee Break
16:00 End of MOVEP 2012



Abstracts

Logic and Verification
Moshe Y. Vardi (Rice University, USA)
Mathematical logic developed as an attempt to provide formal foundations for math-
ematics. The success of that project can be questioned, as the logical foundations of
mathematics proved to be incomplete, possibly inconsistent, and undecidable. Logic,
on the other hand, proved to be highly successful in providing formal foundations
for reasoning about computing systems, where it is deployed today in industrial
tools. This tutorial will focus on one application of logic to verification, which is the
temporal analysis of systems.

Runtime Verification
Martin Leucker (Technische Universität München, Germany)
Starting from a definition of runtime verification, we develop a taxonomy that ex-
plains the different aspects of runtime verification. We explain the core idea of runtime
verification by showing how monitors can be attached to existing programs, be used
to verify certain aspects of the underlying program as well as be used to guide the
program execution. The main part of the presentation deals with synthesis techniques
that, starting from a high level correctness specifications, derive suitable monitors
automatically. We start with properties expressed in linear temporal logic (LTL), first
with a semantics on finite traces and then extended to a semantics over infinite traces.

Computer-Aided Cryptographic Proofs and Designs
Gilles Barthe (University of Manchester, UK)
EasyCrypt is a tool for constructing and verifying cryptographic proofs. EasyCrypt
can be used as a stand-alone application, or as a verifying back-end for cryptographic
compilers. SyntheCrypt is a new tool that synthesizes public-key encryption schemes
and generates proofs of security in EasyCrypt.
The presentation will outline the language-based methods that underlie the design of
both tools and illustrate some of their applications.

Probabilistic model checking
Marta Kwiatkowska (University of Oxford, UK)
Probabilistic model checking is a formal verication technique for the analysis of
systems that exhibit stochastic behaviour. Such behaviour occurs, for example, due
to component failure or randomisation, commonly used as a symmetry breaker in
distributed coordination and communication protocols. The techniques have been
implemented in tools such as PRISM (www.prismmodelchecker.org) and enable a
range of quantitative analyses of probabilistic models against specifications such as
the worst-case probability of failure within 10 seconds or the minimum expected
power consumption over all possible schedulings. This course will give an overview
of probabilistic model checking discrete-time Markov chains and Markov decision
processes, explaining the underlying theory and model checking algorithms for
temporal logics such as PCTL and LTL. The material will be illustrated with several
case studies that have been modelled and analysed in PRISM.



Static analysis by abstract interpretation of run-time errors in synchronous and
multi-threaded embedded C programs
Antoine Miné (CNRS, ENS, France)
In the realm of embedded critical systems, it is crucial to guarantee the correctness of
programs before they are deployed. We present semantic-based two static analyzers
developed in our research group to help addressing this need: Astrée focuses on
synchronous control-command software in C; its extension AstréeA analyzes multi-
threaded embedded C software. These analyzers detect statically (at compile time) all
the arithmetic and memory run-time errors in the program. They are based on abstract
interpretation, a general theory of the approximation of program semantics that
ensures soundness: the analyzers cannot miss any threat. They may however output
false alarms. We show how specializing Astrée with novel abstractions allowed us to
reach the zero false alarm goal (that is, a proof of absence of run-time error) on some
industrial avionic applications.

Unfoldings: A Partial order Approach to Model Checking
Javier Esparza (TU München, Germany)
State space methods are the most popular approach to the automatic verification of
concurrent systems. In their basic form, these methods explore the transition system
associated to the concurrent system. Loosely speaking, the transition system is a
graph having the reachable states of the system as nodes, and an edge from a state s to
another state s’ whenever the system can make a move from s to s’. In the worst case,
state space methods need to explore all nodes and transitions of the transition system.
The main problem of transition systems as a basis for state space methods is the
well-known state-explosion problem. Imagine a concurrent system consisting of n
sequential subsystems, communicating in some way, and assume further that each
of these subsystems can be in one out of m possible states. The global state of the
concurrent system is given by the local states of its components, and so the system
may have up to mn reachable states; in fact, this bound is already reached by the
rather uninteresting system in whose components run independently of each other,
without communicating at all. So very small concurrent systems may generate very
large transition systems. As a consequence, naive state space methods may have huge
time and space requirements even for very small and simple systems.
The unfolding method is a technique for alleviating the state-explosion problem. It
uses results of the theory of true concurrency to replace transition systems by special
partially ordered graphs. While these graphs contain full information about the
reachable states of the system, their nodes are not reachable states themselves. In
particular, the number of nodes of the graph does not grow linearly in the number of
reachable states.
The goal of the course is to provide a gentle introduction to the basics of the unfolding
method, and in particular to introduce an unfolding-based algorithm for model check-
ing concurrent systems against properties specified as formulas of Linear Temporal
Logic (LTL). The course is based on the book

Javier Esparza and Keijo Heljanko. Unfoldings. A Partial-Order Approach to Model



Checking. EATCS Monographs on Theoretical Computer Science. Springer, 2008.

The book is available online (for free) at http://www7.in.tum.de/ es-
parza/bookunf.html It is recommended to download the book and have it available
during the course. Some familiarity with Petri nets will be of advantage.

Timed automata and their quantitative extensions
Kim G. Larsen (Aalborg University, Denmark)

Timed automata is by now a well-established formalism for modeling and analyzing
real-time systems, including real-time controllers, communication protocols. Over
the years a number of symbolic techniques have been developed for the efficient
analysis of timed automata and with implementation in the tool suite UPPAAL
(www.uppaal.{com,org}). The UPPAAL modeling formalism allows for the efficient
analysis of safety and (time-bounded) liveness properties of networks of interacting
timed automata extended with discrete variables, structured and user-defined types
as well as user-defined functions. The course will give an overview of the modeling
formalism of timed automata and the basic symbolic model checking algorithms.
More recently the formalism of timed automata has been extended with continuous
observer variables allowing for issues related to e.g energy consumption in embedded
systems. The course reviews a number of results for the resulting notion of priced
timed automata, including recent results on energy-bounded infinite runs in the
case when energy may both be consumed as well as harvested. Most recently a
stochastic semantics of (priced) timed automata has been put forward enabling the
expression of performance properties such as the probability of violating a deadline
or the expected energy consumption. A range of so-called highly scalable statistical
model-checking techniques have been implemented in UPPAAL, allowing estimation
and testing of such performance metrics to be obtained through simulation, where
the simulation effort increases with the desired level of confidence. The lecture will
contain demonstration of the UPPAAL tool, the new statistical model checking engine
as well as several case studies that have been dealt with by the tool.

Games for Verification and Synthesis
Hugo Gimbert (LaBRI & CNRS, France)
Game playing is a powerful metaphor that fits many situations in which interaction
between autonomous agents plays a central role. Numerous tasks in computer science
and AI such as design, synthesis, verification, testing, query evaluation, planning, etc.
can be formulated in game-theoretic terms. Viewing them abstractly as games reveals
the underlying algorithmic questions, and helps to clarify the relationships between
problem domains.
This talk will illustrate how games can be used in several ways in this context: as
algorithmically tractable models of controllable open systems (e.g. games on graphs
and stochastic games) as algorithmic tools (e.g. for mu-calculus model-checking) as
well as proof tools (e.g. to prove stability under complementation of recognizable set
of trees).



Verification of concurrent systems
Ahmed Bouajjani (LIAFA, Univ. Paris Diderot (Paris 7), France)
The verification of concurrent programs is a challenging problem. This is due to the
huge number of orderings in which actions of different threads can be executed, and
to the intricacy of the interactions between these threads (especially in presence of
dynamic thread creation, recursion, etc). Basic problems such as the state reachability
problem, that is relevant in checking safety properties, are undecidable in general,
even when the manipulated data are in a finite domain. Therefore, restrictions either
on the considered class of program models or on the class of explored behaviors
during the analysis, must be considered in order to obtain decidable and/or tractable
analysis problems.
In this talk, we will present program models capturing relevant classes of programs
(including for instance asynchronous programs) and study the decidability and
complexity of their state reachability problem. Moreover, we will present bounded
analysis techniques (such as context-bounding) that are used for efficient bug detection
in concurrent programs.

Safety, Dependability and Performance Analysis of Extended AADL Models
Alessandro Cimatti (IRST, Italy)
and Thomas Noll (RWTH Aachen University, Germany)
This tutorial presents a component-based modeling approach to system-software
co-engineering of real-time embedded systems, in particular aerospace systems.
Our method is centered around the standardized Architecture Analysis and Design
Language (AADL) modeling framework. Taking the core features of AADL and its
recent Error Model Annex, we have set up a modeling framework that supports a
variety of system analysis and verification methods. Its major distinguishing aspects
are the possibility to describe hardware and software components and its nominal
operations, hybrid (and timing) aspects, as well as probabilistic faults and their prop-
agation and recovery. Moreover, it supports dynamic (i.e., on-the-fly) reconfiguration
of components and inter-component connections. The operational semantics gives
a precise interpretation of specifications by providing a mapping onto networks of
event-data automata. These networks are then subject to different kinds of formal
analysis such as model checking, safety and dependability analysis, and performance
evaluation. We demonstrate tool support realizing these analyses and report on
industrial case studies that have been carried out in the context of aerospace systems.
The tool is publicly available.

Software Synthesis
Ruzica Piskac (Max Planck Institute for Software Systems, Germany)
Software synthesis is a technique for automatically generating code given a specifica-
tion. The goal of software synthesis is to make coding easier while increasing both the
productivity of the programmer and the correctness of the produced code. In this talk
we describe an approach to synthesis that relies on the use of automated reasoning and
decision procedures. The complex specifications are handled by employing efficient
algorithms for reasoning about the domain of the specification. We show how to gen-
eralize some decision procedures into predictable and complete synthesis procedures.



Here completeness means that the procedure is guaranteed to find code that satisfies
the given specification. Moreover, code produced this way is correct by construction.
The synthesis procedure also outputs preconditions on input values that guarantee the
existence of the output values.
In addition, we also outline a synthesis procedure for specifications given in the form
of type constraints. The procedure takes into account polymorphic type constraints as
well as code behavior and derives code snippets that use given library functions. The
constraints can have multiple solutions and hence more than one code snippet can be
a good candidate. We use an additional weight function to rank the derived snippets.
The tools implementing these synthesis algorithms are publicly available.


